简单关联规则算法例题-9个顾客的编号为(T1,T2,T3,T4,T5,T6,T7,T8,T9),每一个顾客购买的商品记录{{I1,I2,I5}...},并使用python实现简单关联规则

2023-10-11 01:50

本文主要是介绍简单关联规则算法例题-9个顾客的编号为(T1,T2,T3,T4,T5,T6,T7,T8,T9),每一个顾客购买的商品记录{{I1,I2,I5}...},并使用python实现简单关联规则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目: 简单关联规则算法例题-9个顾客的编号为(T1,T2,T3,T4,T5,T6,T7,T8,T9),每一个顾客购买的商品记录{{I1,I2,I5},{I2,I4},{I2,I3},{I1,I2,I4},{I1,I3},{I2,I3},{I1,I3},{I1,I2,I3,I5},{I1,I2,I3}},求频繁项集;并用python语言实现
解:

1.理论解答

1.1候选1-项集C1为:

项集数支持度计数
{I1}6
{I2}7
{I3}6
{I4}2
{I5}2

由于最小支持度为2/9=22%,因此最小支持度系数为2,将小于最小支持度系数的去掉,得到1-L1:

1.2 频繁1-项集 1-L1

频繁项集支持度计数
{I1}6
{I2}7
{I3}6
{I4}2
{I5}2

1.3 候选2-项集C2为:

项集数支持度计数
{I1,I2}6
{I1,I3}7
{I1,I4}6
{I1,I5}2
{I2,I3}2
{I2,I4}2
{I2,I5}2
{I3,I4}0
{I3,I5}1
{I4,I5}0

将小于最小支持度系数去掉后,得到2-L2:

1.4 频繁2-项集2-L2

频繁项集支持度计数
{I1,I2}6
{I1,I3}7
{I1,I4}6
{I1,I5}2
{I2,I3}2
{I2,I4}2
{I2,I5}2

1.5 候选3-项集C3为:

项集数支持度计数
{I1,I2,I3}2
{I1,I2,I5}2
{I1,I3,I5}1
{I2,I3,I4}0
{I2,I3,I5}1
{I2,I4,I5}1

将小于最小支持度系数去掉后,得到3-L3:

1.6 频繁3-项集3-L3

频繁项集支持度计数
{I1,I2,I3}2
{I1,I2,I5}2

随后进行候选4项集,已经找不到大于等于最小支持度系数的项集,算法结束,最终得到的频繁项集和所对应的支持度计数为:

频繁项集支持度计数
{I1}6
{I2}7
{I3}6
{I4}2
{I5}2
{I1,I2}6
{I1,I3}7
{I1,I4}6
{I1,I5}2
{I2,I3}2
{I2,I4}2
{I2,I5}2
{I1,I2,I3}2
{I1,I2,I5}2

2.python代码实现:

2.1 获取数据集

data_set = [['I1', 'I2', 'I5'], ['I2', 'I4'], ['I2', 'I3'], ['I1', 'I2', 'I4'], ['I1', 'I3'], ['I2', 'I3'],['I1', 'I3'], ['I1', 'I2', 'I3', 'I5'], ['I1', 'I2', 'I3']]

可根据实际情况换成其他数据集。

2.2 定义最小支持度和最小置信度

min_sup = 0.2
min_con = 0.8

2.3. 封装程序需要的各个函数

(1)获取下一个频繁项集

# 获取下一个频繁项集
def get_next_fre_item_set(data_set, fre_item_set, can_item_len, min_sup_num):fre_items = list(fre_item_set.keys())next_fre_item_set = {}for i in range(len(fre_items) - 1):for j in range(i + 1, len(fre_items)):tempi = set()if isinstance(fre_items[i], str):tempi.add(fre_items[i])else:tempi = set(list(fre_items[i]))tempj = set()if isinstance(fre_items[j], str):tempj.add(fre_items[j])else:tempj = set(list(fre_items[j]))tempi.update(tempj)if len(tempi) > can_item_len:continueif tempi in list(set(item) for item in next_fre_item_set.keys()):continuefor record in data_set:if tempi.issubset(set(record)):if tempi in list(set(item) for item in next_fre_item_set.keys()):next_fre_item_set[tuple(tempi)] += 1else:next_fre_item_set[tuple(tempi)] = 1for key in list(next_fre_item_set.keys()):if next_fre_item_set[key] < min_sup_num:del next_fre_item_set[key]if len(list(next_fre_item_set.keys())) < 1:return Noneelse:return next_fre_item_set

(2)获取所有的频繁项集

# 获取频繁项集
def get_fre_item_sets(data_set, min_sup):num_record = len(data_set)min_sup_num = min_sup * num_recordfre_item_sets = []fre_item_sets.append({})# 统计每个元素的频次for record in data_set:for item in record:if item in fre_item_sets[0].keys():fre_item_sets[0][item] += 1else:fre_item_sets[0][item] = 1# 删除低于最小支持度的项for item in list(fre_item_sets[0].keys()):if fre_item_sets[0][item] < min_sup_num:del fre_item_sets[0][item]can_item_len = 2while True:if len(fre_item_sets[can_item_len - 2]) < 2:breakelse:next_fre_item_set = get_next_fre_item_set(data_set, fre_item_sets[can_item_len - 2], can_item_len,min_sup_num)if next_fre_item_set == None:breakelse:fre_item_sets.append(next_fre_item_set)can_item_len += 1return fre_item_sets

(3) 计算置信度

# 计算置信度
def calculate_confidence(fre_item_sets, subset, fre_item):len_mother = len(subset)len_son = len(fre_item)mother_key = Noneson_key = Noneif len_mother == 1:mother_key = subset[0]else:mother_keys = list(fre_item_sets[len_mother - 1].keys())for i in range(len(mother_keys)):if set(subset) == set(mother_keys[i]):mother_key = mother_keys[i]breakson_keys = list(fre_item_sets[len_son - 1].keys())for i in range(len(son_keys)):if set(fre_item) == set(son_keys[i]):son_key = son_keys[i]breakreturn fre_item_sets[len_son - 1][son_key] / fre_item_sets[len_mother - 1][mother_key]

(4)获取关联规则

# 获取关联规则
def get_association_rules(fre_item_sets, min_con):def subsets(itemset):N = len(itemset)subsets = []for i in range(1, 2 ** N - 1):tmp = []for j in range(N):if (i >> j) % 2 == 1:tmp.append(itemset[j])subsets.append(tmp)return subsetsassociation_rules = []for i in range(1, len(fre_item_sets)):fre_item_set = fre_item_sets[i]for fre_item in list(fre_item_set.keys()):tmp = {}all_subsets = subsets(fre_item)for s1 in range(len(all_subsets) - 1):for s2 in range(s1 + 1, len(all_subsets)):subset1 = all_subsets[s1]subset2 = all_subsets[s2]if len(subset1) + len(subset2) == len(fre_item) and len(set(subset1) & set(subset2)) == 0:confidence = calculate_confidence(fre_item_sets, subset1, fre_item)if confidence > min_con:temp = str(subset1) + ' > ' + str(subset2)tmp[temp] = confidenceconfidence = calculate_confidence(fre_item_sets, subset2, fre_item)if confidence > min_con:temp = str(subset2) + ' > ' + str(subset1)tmp[temp] = confidenceif tmp.keys():association_rules.append(tmp)return association_rules

2.4 使用以上函数进行关联规则的提取

(1)获取频繁项集并打印

fre_item_sets = get_fre_item_sets(data_set, min_sup)for i in fre_item_sets:print(i)

打印出的频繁项集如下,字典的value为出现的频次如下图所示:
在这里插入图片描述
(2)根据频繁项集获取关联规则

association_rules = get_association_rules(fre_item_sets, min_con)
for i in association_rules:print(i)

打印出的关联规则如下,字典的value为置信度如下图所示:
在这里插入图片描述

这篇关于简单关联规则算法例题-9个顾客的编号为(T1,T2,T3,T4,T5,T6,T7,T8,T9),每一个顾客购买的商品记录{{I1,I2,I5}...},并使用python实现简单关联规则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/184655

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v