【科普】PECL/CML/LVDS高速差分接口原理

2023-10-11 00:10

本文主要是介绍【科普】PECL/CML/LVDS高速差分接口原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【摘要】

PECL/CML/LVDS这几种高速差分接口是我们工程中常用接口,本文将从接口起源、输出内部结构、输入内部接口三方面分别阐述各自原理。下一篇文章将重点阐述这几种高速接口之间的互联硬件设计。

图片

1. 差分信号接口介绍

1.1 PECL 接口

PEL 是有 ECL 标准发展而来,在 PECL 电路中省去了负电源,较 ECL 电路更方便使用。PECL 信号的摆幅相对 ECL 要小,这使得该逻辑更适合于高速数据的串性或并行连接。PECL 标准最初有 MOTOROLA 公司提出,经过很长一段时间才在电子工业界推广开。

图片

 (1)PECL 接口输出结构

PECL 电路的输出结构如图 1 所示,包含一个差分对和一对射随器。输出射随器工作在正电源范围内,其电流始终存在,这样有利于提高开关速度。标准的输出负载是接 50Ω至 VCC-2V 的电平上,如图 1 中所示,在这种负载条件下,OUT+与 OUT-的静态电平典型值为 VCC-1.3V, OUT+与OUT-输出电流为 14mA。PECL 结构的输出阻抗很低,典型值为 4~ 5 Ω,这表明它有很强的驱动能力,但当负载与 PECL 的输出端之间有一段传输线时,低的阻抗造成的失配将导致信号时域波形的振铃现象。

图片

图1. PECL 输出结构

(2) PECL 接口输入结构

PECL 输入结构如图 2 所示,它是一个具有高输入阻抗的差分对。该差分对共模输入电压需偏置到 VCC-1.3V,这样允许的输入信号电平动态最大。MAXIM 公司的 PECL 接口有两种形式的输入结构,一种是在芯片上已加有偏置电路,如 MAX3867、MAX3675,另一种则需要外加直流偏置。

图片

图2. PECL 输入电路结构

表一中给出了 MAXIM 公司 PECL 接口输入输出的具体电气指标。

表格1. PECL 输入输出指标

参数

条件

最小值

典型值

最大值

单位

输出高电平

Ta=0℃~85℃

Vcc-1.025

Vcc-0.88

V

Ta=-40℃

Vcc-1.085

Vcc-0.88

V

输出低电平

Ta=0℃~85℃

Vcc-1.81

Vcc-1.62

V

Ta=-40℃

Vcc-1.83

Vcc-1.55

V

输入高电平

Vcc-1.16

Vcc-0.88

V

输入低电平

Vcc-1.81

Vcc-1.48

V

在5V 和3.3V 供电系统中,PECL 接口均适用,3.3V 供电系统中的PECL 常被称作低压PECL,简写为 LVPECL。

在使用 PECL 电路时要注意加电源去耦电路,以免受噪声的干扰,同时输出采用交流还是直流耦合对负载网络的形式将会提出不同的需求。

图片

1.2 CML 接口

CML 是所有高速数据接口形式中最简单的一种,它的输入与输出是匹配好的,从而减少了外围器件,也更适合于在高的频段工作。它所提供的信号摆幅较小,从而功耗更低。

(1)CML 接口输出结构

CML 接口的输出电路形式是一个差分对,该差分对的集电极电阻为 50Ω,如图 3 中所示, 输出信号的高低电平切换是靠共发射极差分对的开关控制的,差分对的发射极到地的恒流源典型值为 16mA,假定 CML 输出负载为一 50Ω上拉电阻,则单端 CML 输出信号的摆幅为Vcc~Vcc-0.4V。在这种情况下,差分输出信号摆幅为 800mV,共模电压为 Vcc-0.2V。若 CML

输出采用交流耦合至 50Ω负载,这时的直流阻抗有集电极电阻决定,为 50Ω,CML 输出共模电压变为 Vcc-0.4V,差分信号摆幅仍为 800mV。在交流和直流耦合情况下输出波形见图 4。

图片

图3. CML 输出结构

图片

图4. CML 在不同负载时的输出波形

(2)CML 接口输入结构

图片

图5. CML 输入电路结构

表二以 MAX3831、MAX3832 为例列出了 CML 器件的输入输出技术参数

表格2. CML 输入和输出参数

参数

条件

最小

典型

最大

单位

差分输入电压

640

800

1000

mV

输出共模电压

Vcc-0.2

V

单端输入电压范围

VIS

Vcc-0.6

Vcc+0.2

V

差分输入电压摆幅

400

1000

MVp-p

注:MAXIM 不同产品 CML 输入灵敏度不同,如 MAX3875MAX3876

1.3 LVDS 接口

LVDS 用于低压差分信号点到点的传输,该方式有三大优点,从而使得它更具有吸引力:

1)  LVDS 传输的信号摆幅小,从而功耗低,一般差分线上电流不超过 4mA,负载阻抗为 100Ω。这一特征使它适合做并行数据传输。

2)  LVDS 信号摆幅小,从而使得该结构可以在 2.4V 的低电压下工作。

3) LVDS 输入单端信号电压可以从 0V 到 2.4V 变化,单端信号摆幅为 400mV,这样允许输入共模电压从 0.2V 到 2.2V 范围内变化,也就是说 LVDS 允许收发两端地电势有±1V 的落差。

图片

(1)LVDS 接口输出结构

MAXIM 公司 LVDS 输出结构在低功耗和速度方面做了优化,电路如图 6 所示。电路差分输出阻抗为 100Ω,表三列出了其他一些指标。

图片

图6. LVDS 输出结构

(2)LVDS 接口输入结构

LVDS 输入结构如图 7 所示,输入差分阻抗为 100Ω,为适应共模电压宽范围内的变化, 输入级还包括一个自动电平调整电路,该电路将共模电压调整为一固定值,该电路后面是一个 SCHMITT 触发器。SCHMITT 触发器为防止不稳定,设计有一定的回滞特性,SCHIMTT 后级是差分放大器。

图片

图7. LVDS 输入结构

表三总结了 MAXIM 公司 LVDS 输入与输出技术指标(MAX3831,MAX3832,MAX3880,MAX3890,MAX3885)

表格3. LVDS 输入与输出参数

参数

符号

条件

最小

典型

最大

单位

LVDS 输出高电压

VOH

1.475

V

LVDS 输出低电压

VOL

0.925

V

LVDS 输出差分电压

|VOd|

250

400

mV

LVDS 在不同状态时

输出差分电压波动

Δ|VOd|

25

mV

LVDS 输出电压偏移量

1.125

1.275

V

LVDS 在不同状态时

输出电压偏移量波动

Δ|VOs|

25

mV

LVDS 输出差分阻抗

80

120

Ω

LVDS 输出电流

两差分端相接

12

mA

差分单端到地短路

40

mA

LVDS 输入单端电压范围

Vi

0

2.4

V

LVDS 输入差分信号灵敏度

|Vid|

100

mV

LVDS 输入共模电流

VOS = 1.2V 时

350

μA

LVDS 回滞门限宽度

70

mV

LVDS 输入差分阻抗

Rin

85

100

115

Ω

由于差分线信号变化连续,差分摆幅小,使之在传输速率的提高以及辐射发射的降低上,相对于传统的TTL以及CMOS等开关量信号有较大的优势,因此高速信号一般采用差分的方式进行传输。目前主要的差分信号电平有LVPECL,LVDS,CML等类型。下篇将对上述各种差分电平的互联电路设计,包括耦合方式、电路参数选择以及设计原则等,进行描述。

硬件电子工程师

一名技术爱好者,我的宗旨是:互相吹捧,共同进步!

32篇原创内容

公众号

这篇关于【科普】PECL/CML/LVDS高速差分接口原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/184093

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可