LLaVA:大型语言和视觉助手,图片识别和理解能力让人惊叹

2023-10-10 17:52

本文主要是介绍LLaVA:大型语言和视觉助手,图片识别和理解能力让人惊叹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01简介        

视觉指令调整:针对多模式 GPT-4 级别功能而构建的大型语言和视觉助手。

视觉聊天:构建多模式 GPT-4 级聊天机器人66e5b30664fe648bf29e7fd68351e6f6.jpeg构建了包含 30 个未见过的图像的评估数据集:每个图像都与三种类型的指令相关联:对话、详细描述和复杂推理。这导致了 90 个新的语言图像指令,我们在这些指令上测试 LLaVA 和 GPT-4,并使用 GPT-4 对它们的响应进行评分,从 1 到 10 分。报告每种类型的总分和相对分数。总体而言,与 GPT-4 相比,LLaVA 获得了 85.1% 的相对分数,表明所提出的自指导方法在多模态设置中的有效性。

  • Science QA:LLaVA 与 GPT-4 协同作用的新 SoTA

05afcc5649391e9ffa77638c2dab498a.jpeg仅 LLaVA 就达到了 90.92%。我们使用纯文本的 GPT-4 作为判断,根据它自己之前的答案和 LLaVA 答案来预测最终答案。这个“GPT-4 作为判断”方案产生了新的 SOTA 92.53%。

  • 视觉指令跟随示例

OpenAI GPT-4 技术报告中两个示例的视觉推理

41c9e88e03a68cae46e5bdb2bdec0ea3.jpeg

  • 光学字符识别 (OCR)

0abefa3b56ca3429d7e38c397f734e59.jpeg

  • 效果展示

634c19c3f61dd30d6995160ab58507bb.jpeg29d6a10a2f1fead096823ae6d3f9498e.jpeg4e4e6d87135ed1c5558ca3a2c5c11221.jpeg

02安装

  1. 克隆此存储库并导航到 LLaVA 文件夹

git clone https://github.com/haotian-liu/LLaVA.gitcd LLaVA

2. 安装包

conda create -n llava python=3.10 -yconda activate llavapip install --upgrade pip # enable PEP 660 supportpip install -e .

3.安装附加包

pip install ninjapip install flash-attn --no-build-isolation

升级到最新的代码库

git pullpip uninstall transformerspip install -e .


03演示

要运行我们的演示,您需要在本地准备 LLaVA 检查点。请按照此处的说明下载检查点。

  • 渐变网页用户界面

要在本地启动 Gradio 演示,请一一运行以下命令。如果您计划启动多个模型工作人员以在不同检查点之间进行比较,则只需启动控制器和 Web 服务器一次


  • 启动控制器

python -m llava.serve.controller --host 0.0.0.0 --port 10000

启动 gradio Web 服务器。

python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload您刚刚启动了 Gradio Web 界面。现在,您可以打开 Web 界面,并将 URL 打印在屏幕上。您可能会注意到模型列表中没有模型。别担心,我们还没有推出任何劳模。当您启动模型工作人员时,它将自动更新。这是在 GPU 上执行推理的实际工作程序。每个工作人员负责 中指定的单个模型--model-path。

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b等到进程完成加载模型,您会看到“Uvicorn running on ...”。

现在,刷新您的 Gradio Web UI,您将在模型列表中看到刚刚启动的模型。您可以根据需要启动任意数量的工作程序,并在同一 Gradio 界面中比较不同模型检查点。请保持不变,并将和--controller修改为每个worker的不同端口号。--port--worker

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>


如果您使用的是带有 M1 或 M2 芯片的 Apple 设备,则可以使用标志指定 mps 设备--device:--device mps。

  • 多个 GPU,当 GPU VRAM <= 24GB 时

如果您的 GPU 的 VRA&nbsp;小于 24GB(例如 RTX3090、RTX 4090&nbsp;等),您可以尝试使用多个 GPU 运行它。如果您有多个 GPU,我们最新的代码库将自动尝试使用多个 GPU。您可以指定要使用哪些 GPU CUDA_VISIBLE_DEVICES。下面是使用前两个 GPU 运行的示例。

CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b

  • (4位、8位推理、量化)

您可以使用量化位(4 位、8 位)启动模型工作线程,这样您就可以在减少 GPU 内存占用的情况下运行推理,从而有可能在具有低至 12GB VRAM 的 GPU 上运行。请注意,使用量化位进行的推理可能不如全精度模型准确。只需将--load-4bit或附加--load-8bit到您正在执行的

模型工作器命令即可。下面是使用 4 位量化运行的示例。python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit

  • (LoRA 权重,未合并)

您可以启动具有 LoRA 权重的模型工作线程,无需将它们与基本检查点合并,以节省磁盘空间。会有额外的加载时间,而推理速度与合并检查点相同。未合并的 LoRA 检查点在型号名称中没有lora-merge,并且通常比合并的检查点小得多(小于 1GB)(7B 为 13G,13B 为 25G)。要加载未合并的 LoRA 权重,您只需传递一个附加参数--model-base,它是用于训练 LoRA 权重的基础 LLM。您可以在模型动物园中检查每个 LoRA 权重的基础 LLM 。

python&nbsp;-m&nbsp;llava.serve.model_worker&nbsp;--host&nbsp;0.0.0.0&nbsp;--controller&nbsp;http://localhost:10000&nbsp;--port&nbsp;40000&nbsp;--worker&nbsp;http://localhost:40000&nbsp;--model-path&nbsp;liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3&nbsp;--model-base&nbsp;lmsys/vicuna-13b-v1.3


这篇关于LLaVA:大型语言和视觉助手,图片识别和理解能力让人惊叹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182101

相关文章

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与