【以图搜图】Python实现根据图片批量匹配(查找)相似图片

2023-10-10 10:59

本文主要是介绍【以图搜图】Python实现根据图片批量匹配(查找)相似图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的:可以解决在本地实现根据图片查找相似图片的功能

背景:由于需要查找别人代码保存的图像的命名,但由于数据集是cifa10图像又小又多,所以直接找很费眼睛,所以实现用该代码根据图像查找图像,从而得到保存图像的命名。

方法:

1、将需要查找的图像(查询图像, queryImg)放入queryImgs文件夹,以及一个存放数据库图像的文件夹datasetImgs

2、批量读取查询图像

3、根据MSE(均方误差)和SSIM(结构相似性指数)计算权重,来比较两张图像的相似程度。

其中:

MSE(均方误差):计算两张图片的每个像素值之间的平均差值,结果越小表示两张图片越相似。

SSIM(结构相似性指数):比较两张图片的结构、亮度和对比度等方面的相似程度,结果介于-1到1之间,越接近1表示两张图片越相似。

weight=MSE\times (1-SSIM)

4、以224×224的大小显示当前queryImg和bestImg(数据库图像中相似度最高的图像),title为queryImg和bestImg的文件名。

5、将bestImg移动到命名为“dstImgs”的文件夹,并保留源文件名称。

运行速度:

在1万张32×32图像中,平均检索速度:34.64s左右(不包括对数据库图像使用transform统一大小),可以为权重设置阈值提前结束检索(建议阈值为小于10)。

限制:

1、需要明确查询图像和数据库图像的大小,并手动更改对应注释的代码。

2、检索结果唯一,不能检索到多个结果(由于我知道我的datasets里只有唯一对应的图像,所以代码逻辑是只保存最相似的图像,或第一个相似度权重小于10的图像),不过可以自行修改代码实现检索多个结果。

代码:

import os
import shutil
import time
from skimage.metrics import structural_similarity as compare_ssim
from torchvision.transforms import transforms
from PIL import Image
import cv2
import numpy as npdata_transform = transforms.Resize((32, 32))  # 数据库图像和查询图像统一大小,大小为32×32
show_transform = transforms.Resize((224, 224))  # 显示图像大小为224×224def transformImg(img, transform):img = transform(Image.fromarray(img))img = np.array(img)return imgroot_path = "./queryImgs"  # 查询图像所在的文件夹
dataset_path = "./datasetImgs"  # 数据库图像所在的文件夹for query_img in os.listdir(root_path):query_img_path = os.path.join(root_path, query_img)query_img_obj = cv2.imread(query_img_path)query_img_obj = transformImg(query_img_obj, data_transform)best_mse = np.Infbest_ssim = np.Infbest_weight = np.Infbest_img_name = ""best_img_path = ""best_img_obj = Noneprint("Start search Img: ", query_img)start_time = time.time()for dataset_img in os.listdir(dataset_path):dataset_img_path = os.path.join(dataset_path, dataset_img)dataset_img_obj = cv2.imread(dataset_img_path)# # 统一数据库图像大小, 若数据库图像大小一致则可以只调整查询图像大小。# dataset_img_obj = transformImg(dataset_img_obj, data_transform)mse = ((query_img_obj - dataset_img_obj) ** 2).mean()ssim = compare_ssim(query_img_obj, dataset_img_obj, channel_axis=query_img_obj.shape[2] - 1)weight = mse * (1 - ssim)if weight < best_weight:best_mse = msebest_ssim = ssimbest_weight = weightbest_img_path = dataset_img_pathbest_img_obj = dataset_img_objbest_img_name = dataset_imgprint(query_img, "->", dataset_img, ": ")print("\tmse: ", best_mse, " ssim: ", ssim, " weight: ", weight)# 权重小于10提前结束检索if best_weight < 10:breakelapsed_time = time.time() - start_timebest_img = np.hstack([transformImg(query_img_obj, show_transform), transformImg(best_img_obj, show_transform)])cv2.imshow("left: {}   right: {}".format(query_img, best_img_name), best_img)cv2.waitKey(0)cv2.destroyAllWindows()if not os.path.exists("./dstImgs"): os.mkdir("./dstImgs")shutil.copy(best_img_path, './dstImgs/' + best_img_name)print("save as: ", './dstImgs/' + best_img_name, " time elapsed: ", elapsed_time, "\n")

结果:

这篇关于【以图搜图】Python实现根据图片批量匹配(查找)相似图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179997

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾