【以图搜图】Python实现根据图片批量匹配(查找)相似图片

2023-10-10 10:59

本文主要是介绍【以图搜图】Python实现根据图片批量匹配(查找)相似图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的:可以解决在本地实现根据图片查找相似图片的功能

背景:由于需要查找别人代码保存的图像的命名,但由于数据集是cifa10图像又小又多,所以直接找很费眼睛,所以实现用该代码根据图像查找图像,从而得到保存图像的命名。

方法:

1、将需要查找的图像(查询图像, queryImg)放入queryImgs文件夹,以及一个存放数据库图像的文件夹datasetImgs

2、批量读取查询图像

3、根据MSE(均方误差)和SSIM(结构相似性指数)计算权重,来比较两张图像的相似程度。

其中:

MSE(均方误差):计算两张图片的每个像素值之间的平均差值,结果越小表示两张图片越相似。

SSIM(结构相似性指数):比较两张图片的结构、亮度和对比度等方面的相似程度,结果介于-1到1之间,越接近1表示两张图片越相似。

weight=MSE\times (1-SSIM)

4、以224×224的大小显示当前queryImg和bestImg(数据库图像中相似度最高的图像),title为queryImg和bestImg的文件名。

5、将bestImg移动到命名为“dstImgs”的文件夹,并保留源文件名称。

运行速度:

在1万张32×32图像中,平均检索速度:34.64s左右(不包括对数据库图像使用transform统一大小),可以为权重设置阈值提前结束检索(建议阈值为小于10)。

限制:

1、需要明确查询图像和数据库图像的大小,并手动更改对应注释的代码。

2、检索结果唯一,不能检索到多个结果(由于我知道我的datasets里只有唯一对应的图像,所以代码逻辑是只保存最相似的图像,或第一个相似度权重小于10的图像),不过可以自行修改代码实现检索多个结果。

代码:

import os
import shutil
import time
from skimage.metrics import structural_similarity as compare_ssim
from torchvision.transforms import transforms
from PIL import Image
import cv2
import numpy as npdata_transform = transforms.Resize((32, 32))  # 数据库图像和查询图像统一大小,大小为32×32
show_transform = transforms.Resize((224, 224))  # 显示图像大小为224×224def transformImg(img, transform):img = transform(Image.fromarray(img))img = np.array(img)return imgroot_path = "./queryImgs"  # 查询图像所在的文件夹
dataset_path = "./datasetImgs"  # 数据库图像所在的文件夹for query_img in os.listdir(root_path):query_img_path = os.path.join(root_path, query_img)query_img_obj = cv2.imread(query_img_path)query_img_obj = transformImg(query_img_obj, data_transform)best_mse = np.Infbest_ssim = np.Infbest_weight = np.Infbest_img_name = ""best_img_path = ""best_img_obj = Noneprint("Start search Img: ", query_img)start_time = time.time()for dataset_img in os.listdir(dataset_path):dataset_img_path = os.path.join(dataset_path, dataset_img)dataset_img_obj = cv2.imread(dataset_img_path)# # 统一数据库图像大小, 若数据库图像大小一致则可以只调整查询图像大小。# dataset_img_obj = transformImg(dataset_img_obj, data_transform)mse = ((query_img_obj - dataset_img_obj) ** 2).mean()ssim = compare_ssim(query_img_obj, dataset_img_obj, channel_axis=query_img_obj.shape[2] - 1)weight = mse * (1 - ssim)if weight < best_weight:best_mse = msebest_ssim = ssimbest_weight = weightbest_img_path = dataset_img_pathbest_img_obj = dataset_img_objbest_img_name = dataset_imgprint(query_img, "->", dataset_img, ": ")print("\tmse: ", best_mse, " ssim: ", ssim, " weight: ", weight)# 权重小于10提前结束检索if best_weight < 10:breakelapsed_time = time.time() - start_timebest_img = np.hstack([transformImg(query_img_obj, show_transform), transformImg(best_img_obj, show_transform)])cv2.imshow("left: {}   right: {}".format(query_img, best_img_name), best_img)cv2.waitKey(0)cv2.destroyAllWindows()if not os.path.exists("./dstImgs"): os.mkdir("./dstImgs")shutil.copy(best_img_path, './dstImgs/' + best_img_name)print("save as: ", './dstImgs/' + best_img_name, " time elapsed: ", elapsed_time, "\n")

结果:

这篇关于【以图搜图】Python实现根据图片批量匹配(查找)相似图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179997

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss