用庞特里亚金极小值原理求解二阶系统的最优控制问题

本文主要是介绍用庞特里亚金极小值原理求解二阶系统的最优控制问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

庞特里亚金极小值原理
1
庞特里亚金极小值原理是在控制向量u(t)受限制的情况下,使得目标函数J取极小,从而求解最优控制问题的原理和方法,又称极大值原理。λ是协态向量,系统模型有多少个变量就有多少个协态。s和u都是省略了符号t的,代表某一时刻的最优状态和最优控制,是一个常数。利用庞特里亚金极小值原理求解最优控制问题首先需要求解协态方程,也就是λ,然后再求解最优控制u*,求解完u*之后,即可得到最优状态。
下面以一个简单的二阶系统为例,简单说明如何用庞特里亚金极小值原理求解二阶系统的最优控制问题。

1. 问题描述

二阶系统的状态s为: s = [ x x ˙ ] s = \left[ \begin{array} { l } { x } \\ { \dot { x } } \end{array} \right] s=[xx˙],控制量u为: u = [ x ¨ ] u = [ \ddot { x } ] u=[x¨],可以将状态s想象成x方向的位移以及x方向上的速度,将控制量u想象成x方向上的加速度,通过输入控制量来改变系统的状态。将问题定义为:试求控制u,将系统在t=2时转移到零态,并使得J取极小值。

系统模型为:
s ˙ = [ 0 1 0 0 ] s + [ 0 1 ] u = [ 0 1 0 0 ] [ x x ˙ ] + [ 0 1 ] x ¨ \begin{aligned} \dot { s } & = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { 0 } & { 0 } \end{array} \right] s + \left[ \begin{array} { l } { 0 } \\ { 1 } \end{array} \right] u = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { 0 } & { 0 } \end{array} \right] \left[ \begin{array} { l } { x } \\ \dot { x } \end{array} \right] + \left[ \begin{array} { l } { 0 } \\ { 1 } \end{array} \right] \ddot { x } \end{aligned} s˙=[0010]s+[01]u=[0010][xx˙]+[01]x¨
目标函数为:
J = 1 2 ∫ 0 2 u 2 d t J = \frac { 1 } { 2 } \int _ { 0 } ^ { 2 } u ^ { 2 } d t J=2102u2dt

2. 求解协态方程

根据庞特里亚金极小值原理中的:
λ ˙ ( t ) = − ∇ s H ( s ∗ ( t ) , u ∗ ( t ) , λ ( t ) ) \dot { \lambda } ( t ) = - \nabla _ { s } H \left( s ^ { * } ( t ) , u ^ { * } ( t ) , \lambda ( t ) \right) λ˙(t)=sH(s(t),u(t),λ(t))
先写出哈密顿函数,然后根据哈密顿函数列出协态方程,并求解。
哈密顿函数为:
H = 1 2 u 2 + λ 1 s 2 + λ 2 u H = \frac { 1 } { 2 } u ^ { 2 } + \lambda _ { 1 } s_ { 2 } + \lambda _ { 2 } u H=21u2+λ1s2+λ2u
两个λ分别乘上对应的系统模型 s ˙ \dot { s } s˙中的两个元素s2和u,其中s2就代表s的第二行的元素(同时也是 s ˙ \dot { s } s˙中第一行的元素),也就是x方向的速度。u即为控制量(同时也是 s ˙ \dot { s } s˙中第二行的元素),这样就得到了哈密顿函数。
将哈密顿函数分别对s1和s2(状态矩阵 s {s} s中的元素)求导,并将s和u这两个常量代入可得协态方程:
λ ˙ 1 ( t ) = − ∂ H ∂ s 1 = 0 ⇒ λ 1 ( t ) = a 1 \dot { \lambda } _ { 1 } ( t ) = - \frac { \partial H } { \partial s _ { 1 } } = 0 \quad \Rightarrow \lambda _ { 1 } ( t ) = a _ { 1 } λ˙1(t)=s1H=0λ1(t)=a1

λ ˙ 2 ( t ) = − ∂ H ∂ s 2 = − λ 1 ( t ) ⇒ λ 2 ( t ) = − a 1 t + a 2 \dot { \lambda } _ { 2 } ( t ) = - \frac { \partial H } { \partial s _ { 2 } } = - \lambda _ { 1 } ( t ) \Rightarrow \lambda _ { 2 } ( t ) = - a _ { 1 } t + a _ { 2 } λ˙2(t)=s2H=λ1(t)λ2(t)=a1t+a2
通过求解上述的微分方程即可求得λ。

3. 求解最优控制

根据庞特里亚金极小值原理中的:
u ∗ ( t ) = arg ⁡ min ⁡ u ( t ) H ( s ∗ ( t ) , u ( t ) , λ ( t ) ) u ^ { * } ( t ) = \arg \min _ { u ( t ) } H \left( s ^ { * } ( t ) , u ( t ) , \lambda ( t ) \right) u(t)=argu(t)minH(s(t),u(t),λ(t))

最优的u*的选取是,当哈密顿函数中的s取最优时,能够使得哈密顿函数最小的那个u即为最优控制量。令导数等于0即可:
∂ H ∂ u = u + λ 2 = 0 ⇒ u = − λ 2 = a 1 t − a 2 \frac { \partial H } { \partial u } = u + \lambda _ { 2 } = 0 \quad \Rightarrow u = - \lambda _ { 2 } = a _ { 1 } t - a _ { 2 } uH=u+λ2=0u=λ2=a1ta2
求得u的表达式之后,对u进行两次积分可以得到s1和s2(状态矩阵 s {s} s中的元素):
s 1 = 1 6 a 1 t 3 − 1 2 a 2 t 2 + a 3 t + a 4 s 2 = 1 2 a 1 t 2 − a 2 t + a 3 \begin{array} { l } {s _ { 1 } = \frac { 1 } { 6 } a _ { 1 } t ^ { 3 } - \frac { 1 } { 2 } a _ { 2 } t ^ { 2 } + a _ { 3 } t + a _ { 4 } } \\ { s _ { 2 } = \frac { 1 } { 2 } a _ { 1 } t ^ { 2 } - a _ { 2 } t + a _ { 3 } } \end{array} s1=61a1t321a2t2+a3t+a4s2=21a1t2a2t+a3

将初始条件和终端条件代入可求得:
u ∗ ( t ) = 9 2 t − 5 u ^ { * } ( t ) = \frac { 9 } { 2 } t - 5 u(t)=29t5

这篇关于用庞特里亚金极小值原理求解二阶系统的最优控制问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179977

相关文章

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32