用庞特里亚金极小值原理求解二阶系统的最优控制问题

本文主要是介绍用庞特里亚金极小值原理求解二阶系统的最优控制问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

庞特里亚金极小值原理
1
庞特里亚金极小值原理是在控制向量u(t)受限制的情况下,使得目标函数J取极小,从而求解最优控制问题的原理和方法,又称极大值原理。λ是协态向量,系统模型有多少个变量就有多少个协态。s和u都是省略了符号t的,代表某一时刻的最优状态和最优控制,是一个常数。利用庞特里亚金极小值原理求解最优控制问题首先需要求解协态方程,也就是λ,然后再求解最优控制u*,求解完u*之后,即可得到最优状态。
下面以一个简单的二阶系统为例,简单说明如何用庞特里亚金极小值原理求解二阶系统的最优控制问题。

1. 问题描述

二阶系统的状态s为: s = [ x x ˙ ] s = \left[ \begin{array} { l } { x } \\ { \dot { x } } \end{array} \right] s=[xx˙],控制量u为: u = [ x ¨ ] u = [ \ddot { x } ] u=[x¨],可以将状态s想象成x方向的位移以及x方向上的速度,将控制量u想象成x方向上的加速度,通过输入控制量来改变系统的状态。将问题定义为:试求控制u,将系统在t=2时转移到零态,并使得J取极小值。

系统模型为:
s ˙ = [ 0 1 0 0 ] s + [ 0 1 ] u = [ 0 1 0 0 ] [ x x ˙ ] + [ 0 1 ] x ¨ \begin{aligned} \dot { s } & = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { 0 } & { 0 } \end{array} \right] s + \left[ \begin{array} { l } { 0 } \\ { 1 } \end{array} \right] u = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { 0 } & { 0 } \end{array} \right] \left[ \begin{array} { l } { x } \\ \dot { x } \end{array} \right] + \left[ \begin{array} { l } { 0 } \\ { 1 } \end{array} \right] \ddot { x } \end{aligned} s˙=[0010]s+[01]u=[0010][xx˙]+[01]x¨
目标函数为:
J = 1 2 ∫ 0 2 u 2 d t J = \frac { 1 } { 2 } \int _ { 0 } ^ { 2 } u ^ { 2 } d t J=2102u2dt

2. 求解协态方程

根据庞特里亚金极小值原理中的:
λ ˙ ( t ) = − ∇ s H ( s ∗ ( t ) , u ∗ ( t ) , λ ( t ) ) \dot { \lambda } ( t ) = - \nabla _ { s } H \left( s ^ { * } ( t ) , u ^ { * } ( t ) , \lambda ( t ) \right) λ˙(t)=sH(s(t),u(t),λ(t))
先写出哈密顿函数,然后根据哈密顿函数列出协态方程,并求解。
哈密顿函数为:
H = 1 2 u 2 + λ 1 s 2 + λ 2 u H = \frac { 1 } { 2 } u ^ { 2 } + \lambda _ { 1 } s_ { 2 } + \lambda _ { 2 } u H=21u2+λ1s2+λ2u
两个λ分别乘上对应的系统模型 s ˙ \dot { s } s˙中的两个元素s2和u,其中s2就代表s的第二行的元素(同时也是 s ˙ \dot { s } s˙中第一行的元素),也就是x方向的速度。u即为控制量(同时也是 s ˙ \dot { s } s˙中第二行的元素),这样就得到了哈密顿函数。
将哈密顿函数分别对s1和s2(状态矩阵 s {s} s中的元素)求导,并将s和u这两个常量代入可得协态方程:
λ ˙ 1 ( t ) = − ∂ H ∂ s 1 = 0 ⇒ λ 1 ( t ) = a 1 \dot { \lambda } _ { 1 } ( t ) = - \frac { \partial H } { \partial s _ { 1 } } = 0 \quad \Rightarrow \lambda _ { 1 } ( t ) = a _ { 1 } λ˙1(t)=s1H=0λ1(t)=a1

λ ˙ 2 ( t ) = − ∂ H ∂ s 2 = − λ 1 ( t ) ⇒ λ 2 ( t ) = − a 1 t + a 2 \dot { \lambda } _ { 2 } ( t ) = - \frac { \partial H } { \partial s _ { 2 } } = - \lambda _ { 1 } ( t ) \Rightarrow \lambda _ { 2 } ( t ) = - a _ { 1 } t + a _ { 2 } λ˙2(t)=s2H=λ1(t)λ2(t)=a1t+a2
通过求解上述的微分方程即可求得λ。

3. 求解最优控制

根据庞特里亚金极小值原理中的:
u ∗ ( t ) = arg ⁡ min ⁡ u ( t ) H ( s ∗ ( t ) , u ( t ) , λ ( t ) ) u ^ { * } ( t ) = \arg \min _ { u ( t ) } H \left( s ^ { * } ( t ) , u ( t ) , \lambda ( t ) \right) u(t)=argu(t)minH(s(t),u(t),λ(t))

最优的u*的选取是,当哈密顿函数中的s取最优时,能够使得哈密顿函数最小的那个u即为最优控制量。令导数等于0即可:
∂ H ∂ u = u + λ 2 = 0 ⇒ u = − λ 2 = a 1 t − a 2 \frac { \partial H } { \partial u } = u + \lambda _ { 2 } = 0 \quad \Rightarrow u = - \lambda _ { 2 } = a _ { 1 } t - a _ { 2 } uH=u+λ2=0u=λ2=a1ta2
求得u的表达式之后,对u进行两次积分可以得到s1和s2(状态矩阵 s {s} s中的元素):
s 1 = 1 6 a 1 t 3 − 1 2 a 2 t 2 + a 3 t + a 4 s 2 = 1 2 a 1 t 2 − a 2 t + a 3 \begin{array} { l } {s _ { 1 } = \frac { 1 } { 6 } a _ { 1 } t ^ { 3 } - \frac { 1 } { 2 } a _ { 2 } t ^ { 2 } + a _ { 3 } t + a _ { 4 } } \\ { s _ { 2 } = \frac { 1 } { 2 } a _ { 1 } t ^ { 2 } - a _ { 2 } t + a _ { 3 } } \end{array} s1=61a1t321a2t2+a3t+a4s2=21a1t2a2t+a3

将初始条件和终端条件代入可求得:
u ∗ ( t ) = 9 2 t − 5 u ^ { * } ( t ) = \frac { 9 } { 2 } t - 5 u(t)=29t5

这篇关于用庞特里亚金极小值原理求解二阶系统的最优控制问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179977

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监