RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值

2023-10-09 19:40

本文主要是介绍RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/131102145

MC

在强化学习中,状态价值 (State Value) 是指在特定状态下,智能体能够从该状态开始执行一系列动作,并且按照某个策略进行决策,所能获得的期望累积回报。状态价值函数用于衡量状态的好坏程度,指导智能体在不同状态下,选择最优的行动。

蒙特卡洛方法是一种基于随机采样和统计的强化学习方法,用于估计值函数或优化策略,得名于摩纳哥的蒙特卡洛赌场,因为这种方法使用了大量的随机模拟。在蒙特卡洛方法中,智能体通过与环境的交互来学习,其基本思想是通过多次采样来估计状态或动作的值函数,并根据估计的值函数进行策略改进。蒙特卡洛方法不需要对环境模型进行假设,只需通过与环境的交互来获得样本。

使用蒙特卡洛方法计算状态价值的具体过程,如下:

  1. 使用策略 π \pi π 采样若干条序列。
  2. 对每一条序列中,每一时间步 t t t 的状态 s s s ,更新计数器 N ( s ) ← N ( s ) + 1 N(s) \leftarrow N(s)+1 N(s)N(s)+1,更新总回报 M ( s ) ← M ( s ) + G t M(s) \leftarrow M(s)+G_{t} M(s)M(s)+Gt
  3. 每一个状态的价值被估计为回报的平均值, V ( s ) = M ( s ) N ( s ) V(s)=\frac{M(s)}{N(s)} V(s)=N(s)M(s)

也可以使用增量更新,即
G ← r + γ ∗ G V ( s ) ← V ( s ) + 1 N ( s ) ( G − V ( s ) ) G \leftarrow r + \gamma*G \\ V(s) \leftarrow V(s) +\frac{1}{N(s)}(G-V(s)) Gr+γGV(s)V(s)+N(s)1(GV(s))
序列的单个步骤是(s,a,r,s_next),即从状态s中,(随机)选择a(s,a)的奖励是r,(随机)跳转至s_next

蒙特卡洛方法的采样源码:

# 把输入的两个字符串通过“-”连接,便于使用上述定义的P、R变量
def join(str1, str2):return str1 + '-' + str2def sample(MDP, Pi, timestep_max, number):"""采样函数:param MDP: MDP的元组:param Pi: 策略:param timestep_max: 最长时间步:param number: 采样的序列数:return: 全部采样"""S, A, P, R, gamma = MDPepisodes = []for _ in range(number):episode = []timestep = 0s = S[np.random.randint(4)]  # 随机选择一个除s5以外的状态s作为起点# 当前状态为终止状态或者时间步太长时,一次采样结束while s != "s5" and timestep <= timestep_max:timestep += 1rand, temp = np.random.rand(), 0# 在状态s下根据策略选择动作for a_opt in A:temp += Pi.get(join(s, a_opt), 0)   # 概率逐渐累加至1if temp > rand:  # 最终一定会选择某个动作 a_opta = a_optr = R.get(join(s, a), 0)breakrand, temp = np.random.rand(), 0# 根据状态转移概率得到下一个状态s_nextfor s_opt in S:temp += P.get(join(join(s, a), s_opt), 0)if temp > rand:  # 概率逐渐累加至1s_next = s_opt  # 最终一定会跳转至下个状态s_optbreakepisode.append((s, a, r, s_next))  # 把(s,a,r,s_next)元组放入序列中s = s_next  # s_next变成当前状态,开始接下来的循环episodes.append(episode)return episodes

计算状态价值的源码:

# 对所有采样序列计算所有状态的价值,不断更新V[s]
def MC(episodes, V, N, gamma):for episode in episodes:G = 0for i in range(len(episode) - 1, -1, -1):  #一个序列从后往前计算(s, a, r, s_next) = episode[i]G = r + gamma * GN[s] = N[s] + 1V[s] = V[s] + (G - V[s]) / N[s]

测试输出:

def main():np.random.seed(0)S = ["s1", "s2", "s3", "s4", "s5"]  # 状态集合A = ["保持s1", "前往s1", "前往s2", "前往s3", "前往s4", "前往s5", "概率前往"]  # 动作集合# 状态转移函数P = {"s1-保持s1-s1": 1.0,"s1-前往s2-s2": 1.0,"s2-前往s1-s1": 1.0,"s2-前往s3-s3": 1.0,"s3-前往s4-s4": 1.0,"s3-前往s5-s5": 1.0,"s4-前往s5-s5": 1.0,"s4-概率前往-s2": 0.2,"s4-概率前往-s3": 0.4,"s4-概率前往-s4": 0.4,}# 奖励函数R = {"s1-保持s1": -1,"s1-前往s2": 0,"s2-前往s1": -1,"s2-前往s3": -2,"s3-前往s4": -2,"s3-前往s5": 0,"s4-前往s5": 10,"s4-概率前往": 1,}gamma = 0.5  # 折扣因子MDP = (S, A, P, R, gamma)# 策略1,随机策略Pi_1 = {"s1-保持s1": 0.5,"s1-前往s2": 0.5,"s2-前往s1": 0.5,"s2-前往s3": 0.5,"s3-前往s4": 0.5,"s3-前往s5": 0.5,"s4-前往s5": 0.5,"s4-概率前往": 0.5,}# 采样5次,每个序列最长不超过20步episodes = sample(MDP, Pi_1, 20, 5)print('第一条序列\n', episodes[0])print('第二条序列\n', episodes[1])print('第五条序列\n', episodes[4])timestep_max = 20# 采样1000次,可以自行修改episodes = sample(MDP, Pi_1, timestep_max, 1000)gamma = 0.5V = {"s1": 0, "s2": 0, "s3": 0, "s4": 0, "s5": 0}N = {"s1": 0, "s2": 0, "s3": 0, "s4": 0, "s5": 0}MC(episodes, V, N, gamma)print("使用蒙特卡洛方法计算MDP的状态价值为\n", V)if __name__ == '__main__':main()

输出结果:

# 使用蒙特卡洛方法计算MDP的状态价值{'s1': -1.228923788722258, 's2': -1.6955696284402704, 's3': 0.4823809701532294, 's4': 5.967514743019431, 's5': 0}# 通过MRP计算的状态价值[[-1.22555411] [-1.67666232] [ 0.51890482] [ 6.0756193 ] [ 0.        ]]

状态价值,可以用于计算状态动作价值,具有指导意义。

这篇关于RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175120

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S