使用深度学习进行脑肿瘤检测和定位:第 2 部分

2023-10-09 15:20

本文主要是介绍使用深度学习进行脑肿瘤检测和定位:第 2 部分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题陈述

通过使用 Kaggle 的 MRI 数据集的图像分割来预测和定位脑肿瘤。

这是该系列的第二部分。如果你还没有阅读第一部分,我建议你访问使用深度学习进行脑肿瘤检测和定位:第1部分以更好地理解代码,因为这两个部分是相互关联的。

文章地址:https://mp.weixin.qq.com/s/vBsTsVvHjA0gtQy3X1wdmw

我们在 ResNet50 上训练了一个分类模型,该模型使用回调对脑部 MRI 是否有肿瘤进行分类以提高我们的性能。在这一部分,我们将训练一个模型来使用图像分割来定位肿瘤。

先决条件

深度学习

数据集链接:https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation

现在,让我们开始实施第二部分,即构建分割模型来定位肿瘤。

图像分割的目标是在像素级别理解图像。它将每个像素与某个类相关联。图像分割模型产生的输出称为图像的蒙版。

  • 首先,从我们在上一部分创建的数据帧中选择蒙版值为 1 的记录,因为只有肿瘤存在,我们才能对其进行定位。

# Get the dataframe containing MRIs which have masks associated with them.
brain_df_mask = brain_df[brain_df['mask'] == 1]
brain_df_mask.shape

输出:(1373, 4)

  • 将数据拆分为训练和测试数据集。首先,我们将整个数据拆分为训练和验证数据,然后将一半的验证数据拆分为测试数据。

from sklearn.model_selection import train_test_split
X_train, X_val = train_test_split(brain_df_mask, test_size=0.15)
X_test, X_val = train_test_split(X_val, test_size=0.5)
  • 我们将再次使用DataGenerator 生成虚拟数据,即training_generator 和validation_generator。为此,我们将首先创建要传递到生成器的图像和蒙版路径的列表。

train_ids = list(X_train.image_path)
train_mask = list(X_train.mask_path)val_ids = list(X_val.image_path)
val_mask= list(X_val.mask_path)# Utilities file contains the code for custom data generator
from utilities import DataGenerator# create image generators
training_generator = DataGenerator(train_ids,train_mask)
validation_generator = DataGenerator(val_ids,val_mask)
  • 定义一个如下所示的方法 Resblock ,以在我们的深度学习模型中使用。

模型中使用 Resblocks 以获得更好的结果。这些块只是一堆层。resblocks 的主要功能是在顶部学习残差函数,而信息沿底部传递不变。

def resblock(X, f):# make a copy of inputX_copy = XX = Conv2D(f, kernel_size = (1,1) ,strides = (1,1),kernel_initializer ='he_normal')(X)X = BatchNormalization()(X)X = Activation('relu')(X) X = Conv2D(f, kernel_size = (3,3), strides =(1,1), padding = 'same', kernel_initializer ='he_normal')(X)X = BatchNormalization()(X)X_copy = Conv2D(f, kernel_size = (1,1), strides =(1,1), kernel_initializer ='he_normal')(X_copy)X_copy = BatchNormalization()(X_copy)# Adding the output from main path and short path togetherX = Add()([X,X_copy])X = Activation('relu')(X)return X
  • 同样,定义 upsample_concat 方法来放大和连接传递的值。Upsampling 层是一个简单的层,没有权重,可以将输入的维度加倍。

def upsample_concat(x, skip):x = UpSampling2D((2,2))(x)merge = Concatenate()([x, skip])return merge
  • 建立一个分割模型,添加下面显示的层,包括上面定义的 resblock 和 upsample_concat。

input_shape = (256,256,3)# Input tensor shape
X_input = Input(input_shape)# Stage 1
conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same', kernel_initializer ='he_normal')(X_input)
conv1_in = BatchNormalization()(conv1_in)
conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same', kernel_initializer ='he_normal')(conv1_in)
conv1_in = BatchNormalization()(conv1_in)
pool_1 = MaxPool2D(pool_size = (2,2))(conv1_in)# Stage 2
conv2_in = resblock(pool_1, 32)
pool_2 = MaxPool2D(pool_size = (2,2))(conv2_in)# Stage 3
conv3_in = resblock(pool_2, 64)
pool_3 = MaxPool2D(pool_size = (2,2))(conv3_in)# Stage 4
conv4_in = resblock(pool_3, 128)
pool_4 = MaxPool2D(pool_size = (2,2))(conv4_in)# Stage 5 (Bottle Neck)
conv5_in = resblock(pool_4, 256)# Upscale stage 1
up_1 = upsample_concat(conv5_in, conv4_in)
up_1 = resblock(up_1, 128)# Upscale stage 2
up_2 = upsample_concat(up_1, conv3_in)
up_2 = resblock(up_2, 64)# Upscale stage 3
up_3 = upsample_concat(up_2, conv2_in)
up_3 = resblock(up_3, 32)# Upscale stage 4
up_4 = upsample_concat(up_3, conv1_in)
up_4 = resblock(up_4, 16)# Final Output
output = Conv2D(1, (1,1), padding = "same", activation = "sigmoid")(up_4)model_seg = Model(inputs = X_input, outputs = output )
  • 编译上面训练的模型。这次我们将自定义优化器的参数。Focal tversky 是损失函数,tversky 是度量。

# Utilities file also contains the code for custom loss function
from utilities import focal_tversky, tversky# Compile the model
adam = tf.keras.optimizers.Adam(lr = 0.05, epsilon = 0.1)
model_seg.compile(optimizer = adam, loss = focal_tversky, metrics = [tversky])
  • 现在,你知道我们在分类器模型中使用的回调。我们将使用相同的方法来获得更好的性能。最后,我们训练我们的分割模型。

# use early stopping to exit training if validation loss is not decreasing even after certain epochs.
earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20)# save the best model with lower validation loss
checkpointer = ModelCheckpoint(filepath="ResUNet-weights.hdf5", verbose=1, save_best_only=True)model_seg.fit(training_generator, epochs = 1, validation_data = validation_generator, callbacks = [checkpointer, earlystopping])
  • 预测测试数据集的蒙版。这里,model是前面训练的分类器模型,model_seg是上面训练的分割模型。

from utilities import prediction# making prediction
image_id, mask, has_mask = prediction(test, model, model_seg)

输出将为我们提供图像路径、预测蒙版和类标签。

  • 根据预测结果创建数据帧并与 image_path 上的测试数据帧合并。

# creating a dataframe for the result
df_pred = pd.DataFrame({'image_path': image_id,'predicted_mask': mask,'has_mask': has_mask})# Merge the dataframe containing predicted results with the original test data.
df_pred = test.merge(df_pred, on = 'image_path')
df_pred.head()

正如你在输出中看到的那样,我们现在已将最终预测的蒙版合并到我们的数据帧中。

  • 最后,将原始图像、原始蒙版和预测蒙版一起可视化,以分析我们的分割模型的准确性。

count = 0 
fig, axs = plt.subplots(10, 5, figsize=(30, 50))
for i in range(len(df_pred)):if df_pred['has_mask'][i] == 1 and count < 5:# read the images and convert them to RGB formatimg = io.imread(df_pred.image_path[i])img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)axs[count][0].title.set_text("Brain MRI")axs[count][0].imshow(img)# Obtain the mask for the image mask = io.imread(df_pred.mask_path[i])axs[count][1].title.set_text("Original Mask")axs[count][1].imshow(mask)# Obtain the predicted mask for the image predicted_mask = np.asarray(df_pred.predicted_mask[i])[0].squeeze().round()axs[count][2].title.set_text("AI Predicted Mask")axs[count][2].imshow(predicted_mask)# Apply the mask to the image 'mask==255'img[mask == 255] = (255, 0, 0)axs[count][3].title.set_text("MRI with Original Mask (Ground Truth)")axs[count][3].imshow(img)img_ = io.imread(df_pred.image_path[i])img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB)img_[predicted_mask == 1] = (0, 255, 0)axs[count][4].title.set_text("MRI with AI Predicted Mask")axs[count][4].imshow(img_)count += 1fig.tight_layout()

输出显示我们的分割模型非常好地定位了肿瘤。做得好!

此外,你可以尝试向目前训练的模型添加更多层并分析性能。还可以将类似的解决方案应用于其他问题陈述,因为图像分割是当今非常感兴趣的领域。

☆ END ☆

如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 woshicver」,每日朋友圈更新一篇高质量博文。

扫描二维码添加小编↓

这篇关于使用深度学习进行脑肿瘤检测和定位:第 2 部分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173760

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本