课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》

本文主要是介绍课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

  抗差自适应滤波:利用等价权函数自适应因子合理的分配信息,有效地滤除钻具振动对动态姿态测量的影响。、
  针对导向钻井工具动态测量受钻具振动的影响而导致测量不准确的问题,提出一种抗差自适应滤波的动态空间姿态测量方法。通过分析钻具振动对姿态测量的影响,并吸收抗差估计和自适应滤波的优点,利用抗差等价权矩阵自适应的确定量测信息,通过自适应因子调整状态模型信息对状态参数的整体贡献,从而消除钻具振动对动态姿态测量的影响,获得实时性强、精度高的姿态参数,提高钻井效率,降低钻井风险。
  在实际钻井过程中,钻头切削岩层、钻柱与井壁的碰撞等会使钻具产生横向振动、纵向振动和扭转振动等,这些振动严重的影响了测量传感器输出信号的正确性。
  抗差自适应滤波的基本思想是:当观测值存在异常时,对观测值采用抗差估计原则,能够控制观测异常的影响;当动力学模型存在异常误差时,将动力学模型信息作为一个整体,采用统一的自适应因子调整动力学模型信息对状态参数的整体贡献。

二、测量系统建模

  方位角 ψ \psi ψ为磁北方向沿逆时针方向到Z 轴在水平面的投影间的夹角,其范围在0°~360°之间,井斜角 θ \theta θ为钻进轴Z 轴与水平面所成的夹角,规定向下为正,反之为负,其范围为-90°~90°,工具面向角 γ \gamma γ 则为钻孔横截面内由钻孔高边到Y 轴所成的角度,范围在0°~360°之间。这样,我们就准确的定义了井下钻具的方位角 ψ \psi ψ 、井斜角 θ \theta θ 和工具面向角 γ \gamma γ ,且角度的正向都符合右手系原则。
在这里插入图片描述
  加速度计和磁通门安装如下:
在这里插入图片描述
在这里插入图片描述
  根据上述理论,建立导向钻井工具姿态测量的动
态数学模型,给出状态方程和量测方程: x k ^ = Φ k , k − 1 x k − 1 + w k \hat{x_k} = \Phi_{k,k-1}x_{k-1}+w_{k} xk^=Φk,k1xk1+wk
   x k x_k xk x k − 1 x_{k-1} xk1分别为 t k t_k tk t k − 1 t_{k-1} tk1时刻的n 维状态参数向量, Φ k , k − 1 \Phi_{k,k-1} Φk,k1为n× n维状态转移矩阵; w k w_k wk 为p 维动力学模型误差向量,其数学期望为0,协方差矩阵为: ∑ w k w i = { ∑ w k , k = i 0 , k ≠ i \sum_{wkwi}= \begin{cases}\sum_{wk},\quad &k=i\\0,\quad &k\neq i\end{cases} wkwi={wk,0,k=ik=i
   w k wk wk为高斯白噪声序列。
  设 t k t_k tk时刻的量测方程为 y k = H k x k + v k y_k=H_kx_k+v_k yk=Hkxk+vk
   y k y_k yk t k t_k tk时刻的m维观测向量; H k H_k Hk为m× n维测量矩阵,也称为观测矩阵; v k v_k vk为m维观测误差向量,其数学期望为0,协方差矩阵为 ∑ v k v i = { ∑ v k , k = i 0 , k ≠ i \sum_{vkvi}= \begin{cases}\sum_{vk},\quad &k=i\\0,\quad &k\neq i\end{cases} vkvi={vk,0,k=ik=i
   v k v_k vk为高斯白噪声序列。在 i = k i=k i=k时, w k w_k wk v k v_k vk的协方差矩阵分别为 ∑ w k \sum_{wk} wk ∑ v k \sum_{vk} vk,这里 w k w_k wk, w i w_i wi, w k w_k wk, v i v_i vi互不相关。
  状态向量为: X = [ ψ , θ , γ ] T X=\begin{bmatrix}\psi,\theta,\gamma\end{bmatrix}^T X=[ψ,θ,γ]T,表明直接将钻具姿态参数作为状态向量,而
非姿态误差作为状态。

三、动态姿态测量

在这里插入图片描述
   X ‾ k = Φ k , k − 1 X k − 1 ^ \overline{X}_{k} = \Phi_{k,k-1}\hat{X_{k-1}} Xk=Φk,k1Xk1^为系统的状态预测方程。 X ‾ k \overline{X}_{k} Xk t k t_k tk的状态预测方程, X k − 1 ^ \hat{X_{k-1}} Xk1^ t k − 1 t_{k-1} tk1为状态估计向量。设状态预测向量 X ‾ k \overline{X}_k Xk的误差方程为: V X ‾ k = X ^ k − X ‾ k = X ^ k − Φ k , k − 1 X ^ k − 1 V_{\overline{X}_k} = \hat{X}_k-\overline{X}_k=\hat{X}_k-\Phi_{k,k-1}\hat{X}_{k-1} VXk=X^kXk=X^kΦk,k1X^k1
   V X ‾ k V_{\overline{X}_k} VXk t k t_k tk时刻状态预测向量 X ^ k \hat{X}_k X^k的残差向量。
  残差向量和新息向量(也称为预测残差向量)分别为:
V k = H k X ^ k − Y k V_k=H_k\hat{X}_k-Y_k Vk=HkX^kYk V ‾ k = H k X ‾ k − Y k \overline{V}_k=H_k\overline{X}_k-Y_k Vk=HkXkYk
   V k V_k Vk V ‾ k \overline{V}_k Vk的协方差矩阵为: ∑ V k = ∑ k − H k ∑ X ^ k H k T \sum_{V_k} = \sum_{k}-H_k\sum_{\hat{X}_k}H^T_k Vk=kHkX^kHkT ∑ V ‾ k = ∑ k + H k ∑ V ‾ k H k T \sum_{\overline{V}_k} = \sum_{k}+H_k\sum_{\overline{V}_k}H^T_k Vk=k+HkVkHkT
  合理地选择自适应因子不但能够自适应地平衡动力学模型预测信息与量测信息的权比,而且能够控制动力学模型扰动异常对滤波解的影响。基于预测残差误差判别统计量的抗差自适应因子函数为:在这里插入图片描述
  等价权矩阵为:在这里插入图片描述

  上式中, P ‾ k \overline{P}_k Pk为观测向量的等价权矩阵, P k = ∑ k − 1 {P}_k=\sum_{k}^{-1} Pk=k1, P X ‾ k = ∑ X ‾ k − 1 P_{\overline{X}_k}=\sum_{\overline{X}_k}^{-1} PXk=Xk1
α k \alpha_k αk ≤1 ,其它符号意义同前。
在这里插入图片描述
K k = ( H k T P ‾ k H k + α k P X ‾ k ) − 1 H k T P ‾ k K_k=(H^T_k\overline{P}_kH_k+\alpha_kP_{\overline{X}_k})^{-1}H_k^T\overline{P}_k Kk=(HkTPkHk+αkPXk)1HkTPk在这里插入图片描述
  式中: K k K_k Kk 为增益矩阵,根据矩阵恒等式,可表示为: K k = α k P X ‾ k H k T ( H k α k P X ‾ k H k T + P ‾ k ) − 1 K_k=\alpha_kP_{\overline{X}_k}H_k^T(H_k\alpha_kP_{\overline{X}_k}H_k^T+\overline{P}_k)^{-1} Kk=αkPXkHkT(HkαkPXkHkT+Pk)1
  对量测信息采用抗差估计,自适应的确定观测噪声协方差矩阵,并利用自适应因子调节状态噪声的协方差矩阵,因此,可以有效的控制量测异常和动态模型噪声异常对空间状态参数估值的影响。

四、实验结果

  实验室地理条件为北纬34.24°,东经108.99°,地球自转角速度为15 (°)/h,磁倾角为55.4°,磁场强度为52.5 T,地球重力加速度为9.8 m/s2。在实验室条件下,根据测斜校验装置测量得到一组理想的实验数据。

五、往期回顾

课题学习(一)----静态测量
课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
课题学习(三)----倾角和方位角的动态测量方法(基于陀螺仪的测量系统)
课题学习(四)----四元数解法

这篇关于课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173340

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss