【正点原子STM32连载】 第四十章 DAC输出三角波实验 摘自【正点原子】APM32F407最小系统板使用指南

本文主要是介绍【正点原子STM32连载】 第四十章 DAC输出三角波实验 摘自【正点原子】APM32F407最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)实验平台:正点原子stm32f103战舰开发板V4
2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420
3)全套实验源码+手册+视频下载地址: http://www.openedv.com/thread-340252-1-1.html##

第四十章 DAC输出三角波实验

本章将使用软件的方式控制APM32F407的DAC输出指定幅值、频率和个数的三角波。通过本章的学习,读者将学习到DAC的使用。
本章分为如下几个小节:
40.1 硬件设计
40.2 程序设计
40.3 下载验证

40.1 硬件设计
40.1.1 例程功能

  1. 按下KEY_UP和KEY0按键,可分别利用DAC输出高采样率和低采样率的三角波
  2. 可通过USMART直接设置DAC输出特定的三角波
  3. LED0闪烁,指示程序正在运行
    40.1.2 硬件资源
  4. LED
    LED0 - PF9
  5. 按键
    KEY0 - PE4
    KEY_UP - PA0
  6. USART1(PA9、PA10连接至板载USB转串口芯片上)
  7. 正点原子 2.8/3.5/4.3/7/10寸TFTLCD模块(仅限MCU屏,16位8080并口驱动)
  8. DAC
    通道1 - PA4
    40.1.3 原理图
    本章实验使用的DAC为APM32F407的片上资源,因此没有对应的连接原理图。
    40.2 程序设计
    40.2.1 Geehy标准库的DAC驱动
    本章实验与上一章实验十分相似,上一章实验使用按键控制DAC通道1输出“离散”的电压,而本章实验的是使用软件算法控制DAC通道1输出的电压,使之输出一个三角波,因此大部分内容都是相似的,以及操作DAC的方式都是一样的,因此请见第39.2.1小节中Geehy标准库的DAC驱动的相关内容。
    40.2.2 DAC驱动
    本章实验的DAC驱动主要负责向应用层提供DAC的初始化以及控制DAC输出指定幅值、频率和个数的三角波的函数。本章实验中,DAC的驱动代码包括dac.c和dac.h两个文件。
    本章实验DAC驱动中对DAC的初始化与上一章实验中对DAC的初始化方式一致,请见第39.2.2小节中DAC初始化的相关内容提供。本小节仅介绍通过软件控制DAC输出三角波的函数,如下所示:
/*** @brief	设置DAC通道1输出三角波* @param	maxval	: 最大值,范围:0~4095* @param	dt		: 每个采样点输出后的延时,单位:微秒* @param	samples	: 一个三角波周期采样点的个数,范围:0~(2 * maxval)* @param	n		: 输出三角波的个数* @retva	l无*/
void dac_triangular_wave(	uint16_t maxval,uint16_t dt,uint16_t samples,uint16_t n)
{uint16_t incval;uint16_t curval;uint16_t i;uint16_t j;samples += (samples % 2);			/* 确保采样点的个数为偶数 */incval = maxval / (samples / 2);	/* 计算下一个采样点相对于当前采样点的增量 */if (incval == 0){return;}for (j=0; j<n; j++){curval = 0;DAC_ConfigChannel1Data(DAC_ALIGN_12BIT_R, curval);/* 每个周期从0开始输出 */for (i=0; i<(samples / 2); i++)						/* 输出三角波的上升沿 */{curval += incval;DAC_ConfigChannel1Data(DAC_ALIGN_12BIT_R, curval);delay_us(dt);}for (i=0; i<(samples / 2); i++)						/* 输出三角波的下降沿 */{curval -= incval;DAC_ConfigChannel1Data(DAC_ALIGN_12BIT_R, curval);delay_us(dt);}}
}

可以看到,该函数就是每间隔一段时间就修改一次DAC的输出电压,以控制DAC输出指定的三角波,对于该函数的实现,读者无需深究,仅需会使用该函数即可。
40.2.3 实验应用代码
本章实验的应用代码,如下所示:

int main(void)
{uint8_t key;uint8_t t = 0;NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_3);	/* 设置中断优先级分组为组3 */sys_apm32_clock_init(336, 8, 2, 7);					/* 配置系统时钟 */delay_init(168);										/* 初始化延时功能 */usart_init(115200);									/* 初始化串口 */usmart_dev.init(84);								/* 初始化USMART */led_init();											/* 初始化LED */lcd_init();											/* 初始化LCD */dac_init(1);											/* 初始化DAC通道1 */lcd_show_string(30, 50, 200, 16, 16, "APM32", RED);lcd_show_string(30, 70, 200, 16, 16, "DAC Triangular WAVE TEST", RED);lcd_show_string(30, 90, 200, 16, 16, "ATOM@ALIENTEK", RED);lcd_show_string(30, 110, 200, 16, 16, "KEY_UP:Wave1  KEY0:Wave2", RED);lcd_show_string(30, 130, 200, 16, 16, "DAC None ", BLUE);while (1){t++;key = key_scan(0);if (key == WKUP_PRES)		/* ADC通道1输出高采样率三角波,频率约为100Hz */{lcd_show_string(30, 130, 200, 16, 16, "DAC Wave1", BLUE);/* 幅值4095,采样点间隔5us,2000个采样点,100个波形 */dac_triangular_wave(4095, 5, 2000, 100);lcd_show_string(30, 130, 200, 16, 16, "DAC None ", BLUE);}else if (key == KEY0_PRES)	/* ADC通道1输出低采样率三角波,频率约为100Hz */{lcd_show_string(30, 130, 200, 16, 16, "DAC Wave2", BLUE);/* 幅值4095,采样点间隔500us,20个采样点,100个波形 */dac_triangular_wave(4095, 500, 20, 100);lcd_show_string(30, 130, 200, 16, 16, "DAC None ", BLUE);}if (t == 10){LED0_TOGGLE();t = 0;}delay_ms(10);}
}

应用代码中会初始化DAC通道1(PA4引脚),完成初始化后,便不断地扫描按键,并根据扫描到的按键,控制DAC通道1输出指定幅值、频率和个数三角波。
40.3 下载验证
在完成编译和烧录操作后,便可分别按下KEY0按键和KEY_UP按键控制DAC通道1输出不同类型的三角波,DAC通道1输出的三角波可通过示波器观察PA4引脚(DAC通道1输出引脚)看到。

这篇关于【正点原子STM32连载】 第四十章 DAC输出三角波实验 摘自【正点原子】APM32F407最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172459

相关文章

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Rsnapshot怎么用? 基于Rsync的强大Linux备份工具使用指南

《Rsnapshot怎么用?基于Rsync的强大Linux备份工具使用指南》Rsnapshot不仅可以备份本地文件,还能通过SSH备份远程文件,接下来详细介绍如何安装、配置和使用Rsnaps... Rsnapshot 是一款开源的文件系统快照工具。它结合了 Rsync 和 SSH 的能力,可以帮助你在 li

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma