步进电机分类、工作原理、主要参数、控制时序及电路图简易分析(四)

本文主要是介绍步进电机分类、工作原理、主要参数、控制时序及电路图简易分析(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

二、步进电机的控制

驱动细分

单4拍(整步)方式驱动时序

双4拍(整步)方式驱动时序

8拍(半步)方式驱动时序

三、电路图

简易电路

驱动芯片电路


二、步进电机的控制

控制以两相步进电机(两个线圈,四条线)为例,(A+)-(B+)-(A-)-(B-)。

驱动细分

步进电机细分:步进电机细分驱动技术是七十年代中期发展起来的一种可以显著改善步进电机综合使用性能的驱动控制技术。它是通过控制各相绕组中的电流,使它们按一定的规律上升或下降,即在零电流到最大电流之间形成多个稳定的中间电流状态,相应的合成磁场矢量的方向也将存在多个稳定的中间状态,且按细分步距旋转。其中合成磁场矢量的幅值决定了步进电机旋转力矩的大小,合成磁场矢量的方向决定了细分后步距角的大小细分驱动技术进一步提高了步进电机转角精度和运行平稳性

步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。细分后电机运行时的实际步距角是基本步距角的几分之一。

直接用高低电平的方式驱动两相四线电机有4拍,八拍的方式,对应的细分为full-step、half-step。而步进电机驱动芯片可以实现更加细致的控制,1/4-step、1/8-step、1/16-step。

两相步进电机的基本步距角是1.8°,即一个脉冲走1.8°,如果没有细分,则是200个脉冲走一圈360°,细分是通过驱动器靠精确控制电机的相电流所产生的,与电机无关,如果是10细分,则发一个脉冲电机走0.18°,即2000个脉冲走一圈360°,电机的精度能否达到或接近0.18°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很,细分数越大精度越难控制

在电机实际使用时,如果对转速要求较高,且对精度和平稳性要求不高的场合,不必选高细分如果转速很低情况下,应该选大细分,确保平滑,减少振动和噪音根据应用场景选择合适的细分模式能提高电机运行的稳定度和减小噪音

单4拍(整步)方式驱动时序

单4拍线圈上电时序表如下:

双4拍(整步)方式驱动时序

双4拍线圈上电时序表如下:

电机转动方向如下所示,(A+)---(B+)---(A-)---(B-),以此循环,

8拍(半步)方式驱动时序

8拍线圈上电时序表如下:

电机转动方向如下所示,再次从头循环

(A+)---(A+B+)---(B+)--(B+A-)---(A-)---(A-B-)---(B-)---(B-A+)

反转时,控制时序倒过来控制就可实现反向转动。

三、电路图

简易电路

简易电路指通过单片机控制导通顺序,然后通过功率器件放大电流驱动步进电机。如下图所示,51单片机控制四线导通状态,然后通过ULN2003放大电流实现控制步进电机的功能。

电路主要特点是电路简单,成本低,缺点是开环控制精度差,无法判定是否丢不与越步

如要判定是否动作需加传感器辅助,以实现简单闭环控制。

驱动芯片电路

以TI的DRV8899-Q1车规级步进电机驱动芯片为例,可 支持高达 1A 的满量程电流,配备内部微步进索引器、智能调谐衰减技术、先进的失速检测算法和集成电流感 应功能。DRV8899-Q1 具有一个简单的步进/方向控制 接口来管理方向和步进速率,支持多达 1/256 级微步 进,以实现平滑的运动轨迹。 其内部带VM 欠压锁定 、 过流保护 、 开路负载检测 、 过热警告和关断 、 欠温警告 等功能模块。 简化版原理图如下。

功能框图如下图所示:

电路主要特点是电路控制简单,成本较高,控制精度较高,缺点是成本较高,通过算法实现步进判定,有误判的可能

本文主要介绍理论基础,后续会增加电路设计章节及其控制程序。

这篇关于步进电机分类、工作原理、主要参数、控制时序及电路图简易分析(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172374

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.