补充6 供应链中的需求预测(二)时序预测法(移动平均法、简单指数平滑法、Holt模型和Winter模型)的具体实现——基于java的实现

本文主要是介绍补充6 供应链中的需求预测(二)时序预测法(移动平均法、简单指数平滑法、Holt模型和Winter模型)的具体实现——基于java的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本文主要说明如何使用Excel和Java建立上篇文章讨论的模型。包括移动平均法、简单指数平滑法、Holt模型和Winter模型,内附java源码。

目录

一、需求历史数据

 二、移动平均法

  1.基于EXCEL的实现

  2.基于java的实现

 三、简单指数平滑法

1.基于EXCEL的实现

2.基于java的实现

 四、趋势调整的指数平滑法(Holt模型)

1.基于EXCEL的实现

2.基于java的实现

 五、趋势和季节调整的指数平滑法(Winter模型)

1.基于EXCEL的实现

2.基于java的实现


一、需求历史数据

        下面有一段时期的需求历史数据。为了选择一种最合适的适应性预测方法对未来四个季度进行分析,需要用到前面文章提到的预测方法进行分析和预测。下面是MoonLight公司一段时期内的需求历史数据。

 二、移动平均法

  1.基于EXCEL的实现

        首先决定对四期的移动平均法的预测结果进行检验。EXCEL的实现过程在这里不再详述,结果如下:

         正如上图所示,TS很好地保持在±6的范围内,这说明该方法预测不存在任何显著的偏差,但是MAD在第12期相当大,MAPE也相当大。

        因此,使用四期的移动平均法,得到未来四期(13~16)的预测值如下:

         由于MAD在第12期为9719,因此预测的标准差为1.25*9719=12149。这相对于预测值来说,预测误差的标准差是非常大的。

  2.基于java的实现

public class HistoryData {//过去12期的历史需求double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};
}
import java.util.Arrays;public class MovingAverageMethod {private double[] demands;public MovingAverageMethod(double[] demands) {this.demands = demands;}public void calculation(Integer periods){if(periods>=demands.length){System.out.println("移动平均时期数大于需求时期数,不可计算!");return;}double[] level = new double[demands.length-periods+1];for (int i = 0; i < demands.length-periods+1; i++) {double periodSum = 0;for (int j = i; j < i+periods; j++) {periodSum+=demands[j];}level[i] = periodSum/periods;}System.out.println("level="+Arrays.toString(level));double[] forecast = new double[demands.length-periods];for (int i = 0; i < demands.length-periods; i++) {forecast[i] = level[i];}System.out.println("forecast="+Arrays.toString(forecast));double[] error = new double[demands.length-periods];for (int i = 0; i < demands.length-periods; i++) {error[i] = forecast[i]-demands[i+periods];}System.out.println("error="+Arrays.toString(error));double[] absoluteError = new double[demands.length-periods];for (int i = 0; i < demands.length - periods; i++) {absoluteError[i]=Math.abs(error[i]);}System.out.println("absoluteError="+Arrays.toString(absoluteError));double[] mse = new double[demands.length-periods];for (int i = 0; i <demands.length-periods; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares + Math.pow(error[j],2);}mse[i] = sumSquares/(i+1);}System.out.println("mse="+Arrays.toString(mse));double[] mad = new double[demands.length-periods];for (int i = 0; i <demands.length-periods; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares +absoluteError[j];}mad[i] = sumSquares/(i+1);}System.out.println("mad="+Arrays.toString(mad));double[] errorPercentage = new double[demands.length-periods];for (int i = 0; i < demands.length-periods; i++) {errorPercentage[i]=100*absoluteError[i]/demands[i+periods];}System.out.println("errorPercentage="+Arrays.toString(errorPercentage));double[] mape = new double[demands.length-periods];for (int i = 0; i < demands.length-periods; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + errorPercentage[j];}mape[i] = sum/(i+1);}System.out.println("mape="+Arrays.toString(mape));double[] ts = new double[demands.length-periods];for (int i = 0; i < demands.length-periods; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + error[j];}ts[i] = sum/mad[i];}System.out.println("ts="+Arrays.toString(ts));System.out.println("============================================");System.out.println("未来"+periods+"期的预测值="+level[level.length-1]);System.out.println("预测的标准差="+1.25*mad[mad.length-1]);}
}
public class Test {public static void main(String[] args) {MovingAverageMethod method = new MovingAverageMethod(new HistoryData().demands);method.calculation(4);}
}

  运行结果如下:

 三、简单指数平滑法

1.基于EXCEL的实现

        接着,决定对α=0.1的简单指数平湖法的预测结果进行检验。根据上文,估计第0期的初始需求水平为第1~12期的实际需求的平均值(L0=22083),结果如下:

         正如上图所示,TS在合理范围内,表示没有发生显著的偏差。但是MAD却相当大,为10208;MAPE为59%。

        因此,使用四期的移动平均法,得到未来四期(13~16)的预测值如下:

         在这种情况下,MAD在第12期为10208,而MAPE在第12期为59%,因此该方法预测误差的标准差估计为1.25*10208=12760,这个值是相当大的。

2.基于java的实现

public class HistoryData {//过去12期的历史需求double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};
}
import java.util.Arrays;public class SimpleExponentialSmoothingMethod {private double[] demands;private double a;public SimpleExponentialSmoothingMethod(double[] demands, double a) {this.demands = demands;this.a = a;}public void calculation(){if(a<=0||a>=1){System.out.println("a小于0或大于1,无法计算!");return;}double[] level = new double[demands.length+1];for (int i = 0; i < demands.length; i++) {level[0] += demands[i] / demands.length;}for (int i = 1; i < demands.length+1; i++) {level[i]=a*demands[i-1]+(1-a)*level[i-1];}System.out.println("level="+ Arrays.toString(level));double[] forecast = new double[demands.length];for (int i = 0; i < demands.length; i++) {forecast[i] = level[i];}System.out.println("forecast="+Arrays.toString(forecast));double[] error = new double[demands.length];for (int i = 0; i < demands.length; i++) {error[i] = forecast[i]-demands[i];}System.out.println("error="+Arrays.toString(error));double[] absoluteError = new double[demands.length];for (int i = 0; i < demands.length; i++) {absoluteError[i]=Math.abs(error[i]);}System.out.println("absoluteError="+Arrays.toString(absoluteError));double[] mse = new double[demands.length];for (int i = 0; i <demands.length; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares + Math.pow(error[j],2);}mse[i] = sumSquares/(i+1);}System.out.println("mse="+Arrays.toString(mse));double[] mad = new double[demands.length];for (int i = 0; i <demands.length; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares +absoluteError[j];}mad[i] = sumSquares/(i+1);}System.out.println("mad="+Arrays.toString(mad));double[] errorPercentage = new double[demands.length];for (int i = 0; i < demands.length; i++) {errorPercentage[i]=100*absoluteError[i]/demands[i];}System.out.println("errorPercentage="+Arrays.toString(errorPercentage));double[] mape = new double[demands.length];for (int i = 0; i < demands.length; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + errorPercentage[j];}mape[i] = sum/(i+1);}System.out.println("mape="+Arrays.toString(mape));double[] ts = new double[demands.length];for (int i = 0; i < demands.length; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + error[j];}ts[i] = sum/mad[i];}System.out.println("ts="+Arrays.toString(ts));System.out.println("============================================");System.out.println("未来4期的预测值="+level[level.length-1]);System.out.println("预测的标准差="+1.25*mad[mad.length-1]);}
}
public class Test {public static void main(String[] args) {SimpleExponentialSmoothingMethod method = new SimpleExponentialSmoothingMethod(new HistoryData().demands,0.1);method.calculation();}
}

运行结果如下:

 四、趋势调整的指数平滑法(Holt模型)

1.基于EXCEL的实现

    接着,决定对α=0.1,β=0.2的Holt模型的预测结果进行检验。根据上文,对需求和时间进行线性回归,得到L0=12015,T0=1549。结果如下:

      正如上图所示,TS在合理范围内,表示没有发生显著的偏差。但是MAD却相当大,为8836;MAPE为52%。

        因此,使用Holt模型,得到未来四期(13~16)的预测值如下:

         在这种情况下,MAD在第12期为8836,因此该方法预测误差的标准差估计为1.25*10208=11045,这个值是仍然偏大。

2.基于java的实现

public class HistoryData {//过去12期的历史需求double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};//时期tdouble[] time = {1,2,3,4,5,6,7,8,9,10,11,12};
}
import java.util.Random;public class SimpleRegression {public static double[] calculate(double[] xData, double[] yData){double sumX = 0;double sumY = 0;double sumXY = 0;double sumx2 = 0;double pjX,pjY;double b;double a;for(int i=0 ; i<xData.length ;  i++){double X = xData[i];double Y  = yData[i];sumX = sumX +X;sumY = sumY + Y;sumXY = sumXY + X*Y;sumx2 = sumx2 + X*X;}pjX = sumX / xData.length;pjY = sumY / xData.length;b = (sumXY - xData.length*pjX*pjY)/(sumx2 - xData.length*pjX*pjX);a = pjY - b*pjX;System.out.println("斜率:"+b);System.out.println("截距:"+a);double[] data = new double[2];data[0]=a;data[1]=b;return data;}
}
import java.util.Arrays;public class HoltMethod {private HistoryData historyData;private double a;private double b;public HoltMethod(HistoryData historyData, double a, double b) {this.historyData = historyData;this.a = a;this.b = b;}public void calculation(){if(a<=0||a>=1){System.out.println("a小于0或大于1,无法计算!");return;}if(b<=0||b>=1){System.out.println("b小于0或大于1,无法计算!");return;}double[] regressionData = SimpleRegression.calculate(historyData.time, historyData.demands);double[] level = new double[historyData.demands.length + 1];double[] trend = new double[historyData.demands.length + 1];level[0]=regressionData[0];trend[0]=regressionData[1];for (int i = 1; i < historyData.demands.length + 1; i++) {level[i]=a*historyData.demands[i-1]+(1-a)*(level[i-1]+trend[i-1]);trend[i]=b*(level[i]-level[i-1])+(1-b)*trend[i-1];}double[] forecast = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {forecast[i] = level[i]+trend[i];}System.out.println("forecast="+Arrays.toString(forecast));double[] error = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {error[i] = forecast[i]-historyData.demands[i];}System.out.println("error="+Arrays.toString(error));double[] absoluteError = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {absoluteError[i]=Math.abs(error[i]);}System.out.println("absoluteError="+Arrays.toString(absoluteError));double[] mse = new double[historyData.demands.length];for (int i = 0; i <historyData.demands.length; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares + Math.pow(error[j],2);}mse[i] = sumSquares/(i+1);}System.out.println("mse="+Arrays.toString(mse));double[] mad = new double[historyData.demands.length];for (int i = 0; i <historyData.demands.length; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares +absoluteError[j];}mad[i] = sumSquares/(i+1);}System.out.println("mad="+Arrays.toString(mad));double[] errorPercentage = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {errorPercentage[i]=100*absoluteError[i]/historyData.demands[i];}System.out.println("errorPercentage="+Arrays.toString(errorPercentage));double[] mape = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + errorPercentage[j];}mape[i] = sum/(i+1);}System.out.println("mape="+Arrays.toString(mape));double[] ts = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + error[j];}ts[i] = sum/mad[i];}System.out.println("ts="+Arrays.toString(ts));System.out.println("============================================");for (int i = 1; i < 5; i++) {double result = level[level.length-1]+i*trend[trend.length-1];System.out.println("未来"+i+"期的预测值="+result);}System.out.println("预测的标准差="+1.25*mad[mad.length-1]);}
}
public class Test {public static void main(String[] args) {HoltMethod method = new HoltMethod(new HistoryData(),0.1,0.2);method.calculation();}
}

运行结果如下:

 五、趋势和季节调整的指数平滑法(Winter模型)

1.基于EXCEL的实现

接着,决定对α=0.05,β=0.1,γ=0.05的Holt模型的预测结果进行检验。根据上文,进行线性回归和求季节性因素,得到L0=12015,T0=1549,S1=0.47,S2=0.68,S3=1.17,S4=1.67。结果如下:

         正如上图所示,TS在合理范围内,表示没有发生显著的偏差。但是MAD(1469)和MAPE(8%)都明显小于其他方法。

        因此,使用Winter模型,得到未来四期(13~16)的预测值如下:

         在这种情况下,MAD在第12期为1469,因此该方法预测误差的标准差估计为1.25*1469=1836,这个值是最小的。

2.基于java的实现

public class HistoryData {//过去12期的历史需求double[] demands = {8000,13000,23000,34000,10000,18000,23000,38000,12000,13000,32000,41000};//时期tdouble[] time = {1,2,3,4,5,6,7,8,9,10,11,12};
}
import java.util.ArrayList;
import java.util.Arrays;public class ExcludingSeasonality {public static ArrayList<double[]> calculate(int period,HistoryData data){if((period&1)!=1){int first = 1+period/2;int last = data.demands.length-period/2;double[] series = new double[last-first+1];double[] pureDemand = new double[last-first+1];for (int i = 0; i < last-first+1; i++) {series[i]=data.time[first-1+i];double sum = 0;for (int j = first+i-period/2; j <first+i+period/2-1; j++) {sum+=data.demands[j];}pureDemand[i] = (data.demands[first-3+i]+data.demands[first+i+1]+2*sum)/(last-first+1);}System.out.println(Arrays.toString(series));System.out.println(Arrays.toString(pureDemand));ArrayList<double[]> objects = new ArrayList<>();objects.add(series);objects.add(pureDemand);return objects;} else {int first = 1 + (period-1)/2;int last = data.demands.length-(period-1)/2;System.out.println(first);System.out.println(last);double[] series = new double[last-first+1];double[] pureDemand = new double[last-first+1];for (int i = 0; i < last-first+1; i++) {series[i]=data.time[first-1+i];double sum = 0;for (int j = first+i-(period-1)/2; j <first+i+(period-1)/2-1; j++) {sum+=data.demands[j];}pureDemand[i] = sum/(last-first+1);}System.out.println(Arrays.toString(series));System.out.println(Arrays.toString(pureDemand));ArrayList<double[]> objects = new ArrayList<>();objects.add(series);objects.add(pureDemand);return objects;}}
}
import java.util.Random;public class SimpleRegression {public static double[] calculate(double[] xData, double[] yData){double sumX = 0;double sumY = 0;double sumXY = 0;double sumx2 = 0;double pjX,pjY;double b;double a;for(int i=0 ; i<xData.length ;  i++){double X = xData[i];double Y  = yData[i];sumX = sumX +X;sumY = sumY + Y;sumXY = sumXY + X*Y;sumx2 = sumx2 + X*X;}pjX = sumX / xData.length;pjY = sumY / xData.length;b = (sumXY - xData.length*pjX*pjY)/(sumx2 - xData.length*pjX*pjX);a = pjY - b*pjX;System.out.println("斜率:"+b);System.out.println("截距:"+a);double[] data = new double[2];data[0]=a;data[1]=b;return data;}
}
import java.util.ArrayList;
import java.util.Arrays;public class WinterMethod {private HistoryData historyData;private double a;private double b;private double c;private int period;public WinterMethod(HistoryData historyData, double a, double b,double c,int period) {this.historyData = historyData;this.a = a;this.b = b;this.c = c;this.period=period;}public void calculation(){ArrayList<double[]> excludeData = ExcludingSeasonality.calculate(period, historyData);double[] regressionData = SimpleRegression.calculate(excludeData.get(0), excludeData.get(1));System.out.println("回归结果:"+Arrays.toString(regressionData));//剔除季节性因素后的需求double[] pureDemands=new double[historyData.demands.length];double[] seasonalFactors=new double[historyData.demands.length];for (int i = 0; i < pureDemands.length; i++) {pureDemands[i] = regressionData[0]+regressionData[1]*historyData.time[i];seasonalFactors[i]=historyData.demands[i]/pureDemands[i];}double[] seasonalFactor = new double[period];for (int i = 0; i <period; i++) {double sum = 0;for (int j = 0; j < historyData.demands.length/period; j++) {sum+=seasonalFactors[i+period*j];}seasonalFactor[i]=sum/(historyData.demands.length/period);}System.out.println("季节因素:"+Arrays.toString(seasonalFactor));//求解double[] level = new double[historyData.demands.length + 1];double[] trend = new double[historyData.demands.length + 1];double[] season = new double[historyData.demands.length+period];level[0]=regressionData[0];trend[0]=regressionData[1];for (int i = 0; i < period; i++) {season[i]=seasonalFactor[i];}for (int i = 1; i < historyData.demands.length + 1; i++) {level[i]=a*(historyData.demands[i-1]/season[i-1])+(1-a)*(level[i-1]+trend[i-1]);trend[i]=b*(level[i]-level[i-1])+(1-b)*trend[i-1];if(i<=12){season[i+period-1]=c*(historyData.demands[i-1]/level[i])+(1-c)*season[i-1];}}System.out.println("level:"+Arrays.toString(level));System.out.println("trend:"+Arrays.toString(trend));System.out.println("season:"+Arrays.toString(season));double[] forecast = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {forecast[i] = (level[i]+trend[i])*season[i];}System.out.println("forecast="+Arrays.toString(forecast));double[] error = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {error[i] = forecast[i]-historyData.demands[i];}System.out.println("error="+Arrays.toString(error));double[] absoluteError = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {absoluteError[i]=Math.abs(error[i]);}System.out.println("absoluteError="+Arrays.toString(absoluteError));double[] mse = new double[historyData.demands.length];for (int i = 0; i <historyData.demands.length; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares + Math.pow(error[j],2);}mse[i] = sumSquares/(i+1);}System.out.println("mse="+Arrays.toString(mse));double[] mad = new double[historyData.demands.length];for (int i = 0; i <historyData.demands.length; i++) {double sumSquares = 0;for (int j = 0; j < i+1; j++) {sumSquares = sumSquares +absoluteError[j];}mad[i] = sumSquares/(i+1);}System.out.println("mad="+Arrays.toString(mad));double[] errorPercentage = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {errorPercentage[i]=100*absoluteError[i]/historyData.demands[i];}System.out.println("errorPercentage="+Arrays.toString(errorPercentage));double[] mape = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + errorPercentage[j];}mape[i] = sum/(i+1);}System.out.println("mape="+Arrays.toString(mape));double[] ts = new double[historyData.demands.length];for (int i = 0; i < historyData.demands.length; i++) {double sum = 0;for (int j = 0; j < i + 1; j++) {sum = sum + error[j];}ts[i] = sum/mad[i];}System.out.println("ts="+Arrays.toString(ts));System.out.println("============================================");for (int i = 1; i < 5; i++) {double result = (level[level.length-1]+i*trend[trend.length-1])*season[historyData.demands.length+period-5+i];System.out.println("未来"+i+"期的预测值="+result);}System.out.println("预测的标准差="+1.25*mad[mad.length-1]);}
}
public class Test {public static void main(String[] args) {WinterMethod method = new WinterMethod(new HistoryData(),0.05,0.1,0.1,4);method.calculation();}
}

运行结果如下:

 

这篇关于补充6 供应链中的需求预测(二)时序预测法(移动平均法、简单指数平滑法、Holt模型和Winter模型)的具体实现——基于java的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171660

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.