医学图像配准 (Medical Image Registration)

2023-10-09 07:40

本文主要是介绍医学图像配准 (Medical Image Registration),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Classification

Transformation

 Registration Algorithms

Landmark Based

Surfaced Based

Voxel Intensity Based

Information Theory Based

Registration using basis functions

Registration using splines

Other Physics Based Registration

Optimization

Visualization

Validation


Classification

1. Dimensionality

2D-2D, 3D-3D, 2D-3D

2. Nature of registration basis

-Image based

        Extrinsic, Intrinsic

-Non-image based

3. Nature of the transformation

-Rigid, Affine, Projective, Curved

4. Interactive

-Interactive, Semi-automatic, Automatic

5. Modalities involved

-Monomodal, Multimodal, Modality to model (the third one can be involved in the first two categories)

6. Subject

-Intra-subject, Inter-subject, Atlas (the third one can be involved in the inter-subject)

7. Domain of transformation

-Local, Global

8. Optimization procedure

9. Object

Transformation

Relate the position of features in two images

-Rigid (Rigid-body)

        Translations and rotations

-Affine

        Also allows scaling and shearing

-Curved

        Allows the mapping of straight lines to curves 

- Perspective

        The parallelism of lines need not be preserved

(Curved and perspective can be summarized as Non-linear)

 Registration Algorithms

Methods used to find the transformation

1. Rigid & affine

-Landmark based (feature point)

-Information theory based

-Edge based

-Voxel intensity based

2. Non-rigid

-Registration using basis functions

-Registration using splines

-Physics based

-Elastic, Fluid, Optical flow, etc.

Landmark Based

Identifying corresponding points in the images and inferring the image transformation.

1. Types of landmarks

-Intrinsic

        internal anatomical structure

-Extrinsic

        artificial objects attached to the patients

2. Compute the average or centroid of each set of points -> translation

3. Rotate this point set about the new centroid until the sum of the squared distances between each corresponding point pair is minimized.

Surfaced Based

1. Method

-Extract corresponding surfaces

-Compute the transformation by minimizing some measure of distance between the two surfaces

2. Algorithms used

-The "Head and Hat" Algorithm

-The Iterative Closest Point Algorithm

-Registration using crest lines

Voxel Intensity Based

1. Method

-Calculating the registration transformation by optimizing some measures calculated directly from the voxel values in the images

2. Algorithms used

-Registration by minimizing intensity difference

-Correlation techniques

-Ratio image uniformity

-Partitioned intensity uniformity

Information Theory Based

1. Maximize the amount of shared information in two images

-Reduce the amount of information in the combined image

2. Algorithms used

-Joint entropy

        Joint entropy measures the amount of information in the two images combined (min)

-Mutual information

        A measure of how well one image explains the other, and is maximized at the optimal alignment (max)

-Normalized mutual information

Registration using basis functions

1. Represent the deformation field using a set of basis functions

-Fourier (trigonometric) basis functions or wavelet basis functions

-Implement smoothness constraint by a linear combination of basis functions

-The trigonometric basis functions correspond to a spectral representation of the deformation field where each basis function describes a particular frequency of the deformation

Registration using splines

1. Assumption

-A set of corresponding points or landmarks (control points) can be identified

2. At control points, interpolate or approximate the displacements to map the location of the control points in both images

3. Between control points, they provide a smoothly varying displacement field

Elastic Registration

1. Model the deformation as a physical process resembling the stretching of an elastic material

-The physical process is governed by the internal force & external force

-Described by the Navier linear elastic partial differential equation

2. The external force drives the registration process

-The external force can be the gradient of a similarity measure

        e.g. local correlation measure based on intensities, intensity differences, or intensity features such as edge and curvature.

-Or the distance between the curves and surfaces of corresponding anatomical structures

Other Physics Based Registration

1. Fluid registration

-The image was modeled as a highly viscous fluid

2. Registration using mechanical models

-Use a three-component model to simulate the properties of rigid, elastic, and fluid structures

3. Registration using optical flow

Optimization

Many registration algorithms require an iterative approach

-An initial estimate of the transformation is gradually refined

-In each iteration, the current estimate of the transformation is used to calculate a similarity measure

-Make another estimate of the transformation, evaluate the similarity measure again, and continue until the algorithm converges

-No transformation can be found that results in a better value of the similarity measure, to within a preset tolerance

Visualization

1. Color overlay

2. Interleaved pixel or chessboard fusion

3. Dynamic alternating display

4. Split view displays

5. Subtraction images

6. Etc.

Validation

1. Measurements using computer-generated models, images of physical phantoms of accurately known construction and dimensions, and images of patients or volunteers.

-Robustness

-Accuracy

2. Assessment of accuracy

-Estimate of some geometrical measure of alignment error

-Compare the system to be validated against a gold standard

-Visual assessment

这篇关于医学图像配准 (Medical Image Registration)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171341

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

超越IP-Adapter!阿里提出UniPortrait,可通过文本定制生成高保真的单人或多人图像。

阿里提出UniPortrait,能根据用户提供的文本描述,快速生成既忠实于原图又能灵活调整的个性化人像,用户甚至可以通过简单的句子来描述多个不同的人物,而不需要一一指定每个人的位置。这种设计大大简化了用户的操作,提升了个性化生成的效率和效果。 UniPortrait以统一的方式定制单 ID 和多 ID 图像,提供高保真身份保存、广泛的面部可编辑性、自由格式的文本描述,并且无需预先确定的布局。

Winfrom中解决图像、文字模糊的方法

1.添加清单 2.将清单中的下面内容取消注释

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。

Matplotlib图像读取和输出及jpg、png格式对比,及透明通道alpha设置

图像像素值 图像像素值一般size为3,也就是通道数,分别代表R,G,B,如果只有单一 一个值则表示灰度值,也就是说一张二维图片,当长和宽都为1080时,那么若是灰度图像,图像尺寸为(1080,1080,1)若是RGB图像则为(1080,1080,3), jpg、png图像格式 jpg图像的灰度值范围和RGB范围为[0,255],数值类型为uint8,也就是无符号整数 png图像的灰度值范