立体匹配网络中的domain adaptation问题:AdaStereo

2023-10-09 05:59

本文主要是介绍立体匹配网络中的domain adaptation问题:AdaStereo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概述
  • 损失函数

概述

  • 希望讨论的问题是什么?
    以PSMNet为例,其在Middlebury数据集上进行预训练得到的模型,在KITTI上的推理效果或许就不好。这篇文章就想聊聊怎么去处理不同场景下的模型的适应问题。又或者说,模型的泛化问题。

  • 参考论文及相关信息为:
    在这里插入图片描述
    是商汤2020年的工作。

  • 论文的效果怎么样?
    在这里插入图片描述

  • 能否简要概述是怎么解决的问题?
    假定现在有两个数据集,一个是合成数据集,数据量非常大,另一个是真实场景数据集,数据量相对小很多,文章认为这两个数据集之间的gap主要在于以下几个层面:

    1. input image

    1. “At the input image level, color and brightness are the obvious gaps.”
    2. 通过提出一个 non-adversarial progressive color transfer算法将输入的color space与target影像的场景进行对齐,这个过程通过网络训练完成。

    2. internal cost volume

    1. ‘…significant differences in distributions’
    2. 使用了cost normalization 层,用于配准cost distribution。主要使用了两个归一化操作:channel normalization以及pixel normalization

    3. output disparity

    1. ‘Moreover, geometries of the output disparity maps are inconsistent as well’
    2. self- supervised occlusion-aware reconstruction,

提出了AdaStereo,旨在构建一个标准的场景自适应网络,网络结构为:
在这里插入图片描述

已知:

  1. 作为source的大量合成数据集 ( I s t , I s r ) (I_s^t,I_s^r) (Ist,Isr)
  2. 合成数据集的真实视差 d s l ^ \hat{d_s^l} dsl^
  3. 作为target的少量真实数据集 ( I t l , I t r ) (I_t^l,I_t^r) (Itl,Itr)

希望的推理输出:

  1. 真实场景的视差 d t l d_t^l dtl

损失函数

整体的损失函数为:
L = L s m a i n + λ s o c c L s o c c + λ t a r L t a r + λ t o c c L t o c c + λ t s m L t s m L=L_{s}^{m a i n}+\lambda_{s}^{o c c} L_{s}^{o c c}+\lambda_{t}^{a r} L_{t}^{a r}+\lambda_{t}^{o c c} L_{t}^{o c c}+\lambda_{t}^{s m} L_{t}^{s m} L=Lsmain+λsoccLsocc+λtarLtar+λtoccLtocc+λtsmLtsm
其中的 λ \lambda λ为对应的loss weights。

损失函数中的五项具体为:

  1. source domain层面的视差回归loss:
    L s m a i n = S m o o t h L 1 ( d s l − d s l ^ ) L_s^{main} = Smooth_{L1}(d_s^l-\hat{d_s^l}) Lsmain=SmoothL1(dsldsl^)

  2. 在souce domain层面的occlusion mask训练损失,使用binary cross entropy loss:
    L s o c c = B C E ( O s l , O s l ^ ) L_s^{occ} = BCE(O_s^l,\hat{O_s^l}) Lsocc=BCE(Osl,Osl^)

  3. 在target domain层面,the occlusion-aware appearance reconstruction loss:
    L t a r = α 1 − S S I M ( I t l ⊙ ( 1 − O t l ) , I t l ‾ ⊙ ( 1 − O t l ) ) 2 + ( 1 − α ) ∥ I t l ⊙ ( 1 − O t l ) − I t l ‾ ⊙ ( 1 − O t l ) ∥ 1 \begin{aligned} L_{t}^{a r}=& \alpha \frac{1-S S I M\left(I_{t}^{l} \odot\left(1-O_{t}^{l}\right), \overline{I_{t}^{l}} \odot\left(1-O_{t}^{l}\right)\right)}{2} \\ &+(1-\alpha)\left\|I_{t}^{l} \odot\left(1-O_{t}^{l}\right)-\overline{I_{t}^{l}} \odot\left(1-O_{t}^{l}\right)\right\|_{1} \end{aligned} Ltar=α21SSIM(Itl(1Otl),Itl(1Otl))+(1α)Itl(1Otl)Itl(1Otl)1

    其中, ⊙ \odot 表示逐元素的乘法,SSIM表示simplified single scale SSIM项(3*3的block filter),以及 α \alpha α设置为0.85。

  4. 在target domain中,在occulusion mask上使用 L 1 L1 L1正则项:
    L t o c c = ∣ ∣ O t l ∣ ∣ 1 L_t^{occ}=||O_t^l||_1 Ltocc=Otl1

  5. 在target-domain上,使用edge-aware项作为target-domain中的视差平滑项,其中 ∂ \partial 表示gradient,
    L t s m = ∣ ∂ x d t l ∣ e − ∣ ∂ x I t l ∣ + ∣ ∂ y d t l ∣ e − ∣ ∂ y I t l ∣ L_{t}^{s m}=\left|\partial_{x} d_{t}^{l}\right| e^{-\left|\partial_{x} I_{t}^{l}\right|}+\left|\partial_{y} d_{t}^{l}\right| e^{-\left|\partial_{y} I_{t}^{l}\right|} Ltsm=xdtlexItl+ydtleyItl

这篇关于立体匹配网络中的domain adaptation问题:AdaStereo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170819

相关文章

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作