【Flink系列】- RocksDB增量模式checkpoint大小持续增长的问题及解决

本文主要是介绍【Flink系列】- RocksDB增量模式checkpoint大小持续增长的问题及解决,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景


Flink版本:1.13.5

一个使用FlinkSQL开发的生产线上任务, 使用Tumble Window做聚和统计,并且配置table.exec.state.ttl为7200000,设置checkpoint周期为5分钟,使用rocksdb的增量模式。

正常情况下,任务运行一段时间以后,新增和过期的状态达到动态的平衡,随着RocksDB的compaction,checkpoint的大小会在小范围内上下起伏。

实际观察到,checkpoint大小持续缓慢增长,运行20天以后,从最初了100M左右,增长到了2G,checkpoint的时间也从1秒增加到了几十秒。

源码分析


我们看一下RocksIncrementalSnapshotStrategy.RocksDBIncrementalSnapshotOperation类中的get()方法:

public SnapshotResult<KeyedStateHandle> get(CloseableRegistry snapshotCloseableRegistry) throws Exception {boolean completed = false;SnapshotResult<StreamStateHandle> metaStateHandle = null;Map<StateHandleID, StreamStateHandle> sstFiles = new HashMap();HashMap miscFiles = new HashMap();boolean var15 = false;SnapshotResult var18;try {var15 = true;metaStateHandle = this.materializeMetaData(snapshotCloseableRegistry);Preconditions.checkNotNull(metaStateHandle, "Metadata was not properly created.");Preconditions.checkNotNull(metaStateHandle.getJobManagerOwnedSnapshot(), "Metadata for job manager was not properly created.");this.uploadSstFiles(sstFiles, miscFiles, snapshotCloseableRegistry);synchronized(RocksIncrementalSnapshotStrategy.this.materializedSstFiles) {RocksIncrementalSnapshotStrategy.this.materializedSstFiles.put(this.checkpointId, sstFiles.keySet());}IncrementalRemoteKeyedStateHandle jmIncrementalKeyedStateHandle = new IncrementalRemoteKeyedStateHandle(RocksIncrementalSnapshotStrategy.this.backendUID, RocksIncrementalSnapshotStrategy.this.keyGroupRange, this.checkpointId, sstFiles, miscFiles, (StreamStateHandle)metaStateHandle.getJobManagerOwnedSnapshot());DirectoryStateHandle directoryStateHandle = this.localBackupDirectory.completeSnapshotAndGetHandle();SnapshotResult snapshotResult;if (directoryStateHandle != null && metaStateHandle.getTaskLocalSnapshot() != null) {IncrementalLocalKeyedStateHandle localDirKeyedStateHandle = new IncrementalLocalKeyedStateHandle(RocksIncrementalSnapshotStrategy.this.backendUID, this.checkpointId, directoryStateHandle, RocksIncrementalSnapshotStrategy.this.keyGroupRange, (StreamStateHandle)metaStateHandle.getTaskLocalSnapshot(), sstFiles.keySet());snapshotResult = SnapshotResult.withLocalState(jmIncrementalKeyedStateHandle, localDirKeyedStateHandle);} else {snapshotResult = SnapshotResult.of(jmIncrementalKeyedStateHandle);}completed = true;var18 = snapshotResult;var15 = false;} finally {if (var15) {if (!completed) {List<StateObject> statesToDiscard = new ArrayList(1 + miscFiles.size() + sstFiles.size());statesToDiscard.add(metaStateHandle);statesToDiscard.addAll(miscFiles.values());statesToDiscard.addAll(sstFiles.values());this.cleanupIncompleteSnapshot(statesToDiscard);}}}

重点关注uploadSstFiles()方法的实现细节:

            Preconditions.checkState(this.localBackupDirectory.exists());Map<StateHandleID, Path> sstFilePaths = new HashMap();Map<StateHandleID, Path> miscFilePaths = new HashMap();Path[] files = this.localBackupDirectory.listDirectory();if (files != null) {this.createUploadFilePaths(files, sstFiles, sstFilePaths, miscFilePaths);sstFiles.putAll(RocksIncrementalSnapshotStrategy.this.stateUploader.uploadFilesToCheckpointFs(sstFilePaths, this.checkpointStreamFactory, snapshotCloseableRegistry));miscFiles.putAll(RocksIncrementalSnapshotStrategy.this.stateUploader.uploadFilesToCheckpointFs(miscFilePaths, this.checkpointStreamFactory, snapshotCloseableRegistry));}

进入到createUploadFilePaths()方法:

        private void createUploadFilePaths(Path[] files, Map<StateHandleID, StreamStateHandle> sstFiles, Map<StateHandleID, Path> sstFilePaths, Map<StateHandleID, Path> miscFilePaths) {Path[] var5 = files;int var6 = files.length;for(int var7 = 0; var7 < var6; ++var7) {Path filePath = var5[var7];String fileName = filePath.getFileName().toString();StateHandleID stateHandleID = new StateHandleID(fileName);if (!fileName.endsWith(".sst")) {miscFilePaths.put(stateHandleID, filePath);} else {boolean existsAlready = this.baseSstFiles != null && this.baseSstFiles.contains(stateHandleID);if (existsAlready) {sstFiles.put(stateHandleID, new PlaceholderStreamStateHandle());} else {sstFilePaths.put(stateHandleID, filePath);}}}}

  这里是问题的关键,我们可以归纳出主要逻辑:

1. 扫描rocksdb本地存储目录下的所有文件,获取到所有的sst文件和misc文件(除sst文件外的其他所有文件);

2. 将sst文件和历史checkpoint上传的sst文件做对比,将新增的sst文件路径记录下来;

3. 将misc文件的路径记录下来;

这里就是增量checkpoint的关键逻辑了, 我们发现一点,增量的checkpoint只针对sst文件, 对其他的misc文件是每次全量备份的,我们进到一个目录节点看一下有哪些文件被全量备份了:

[hadoop@fsp-hadoop-1 db]$ ll
总用量 8444
-rw-r--r-- 1 hadoop hadoop       0 3月  28 14:56 000058.log
-rw-r--r-- 1 hadoop hadoop 2065278 3月  31 10:17 025787.sst
-rw-r--r-- 1 hadoop hadoop 1945453 3月  31 10:18 025789.sst
-rw-r--r-- 1 hadoop hadoop   75420 3月  31 10:18 025790.sst
-rw-r--r-- 1 hadoop hadoop   33545 3月  31 10:18 025791.sst
-rw-r--r-- 1 hadoop hadoop   40177 3月  31 10:18 025792.sst
-rw-r--r-- 1 hadoop hadoop   33661 3月  31 10:18 025793.sst
-rw-r--r-- 1 hadoop hadoop   40494 3月  31 10:19 025794.sst
-rw-r--r-- 1 hadoop hadoop   33846 3月  31 10:19 025795.sst
-rw-r--r-- 1 hadoop hadoop      16 3月  30 19:46 CURRENT
-rw-r--r-- 1 hadoop hadoop      37 3月  28 14:56 IDENTITY
-rw-r--r-- 1 hadoop hadoop       0 3月  28 14:56 LOCK
-rw-rw-r-- 1 hadoop hadoop   38967 3月  28 14:56 LOG
-rw-r--r-- 1 hadoop hadoop 1399964 3月  31 10:19 MANIFEST-022789
-rw-r--r-- 1 hadoop hadoop   10407 3月  28 14:56 OPTIONS-000010
-rw-r--r-- 1 hadoop hadoop   13126 3月  28 14:56 OPTIONS-000012

1. CURRENT、IDENTIFY、LOCK、OPTIONS-*, 这些文件基本是固定大小,不会有变化;

2. LOG文件, 这个文件是rocksdb的日志文件,默认情况下,flink设置的rocksdb的日志输出级别是HEAD级别,几乎不会有日志输出,但是如果你配置了state.backend.rocksdb.log.level,比如说配置为了INFO_LEVEL,那么这个LOG文件会持续输出并且不会被清理;

3. MANIFEST-*,这是rocksdb的事务日志,在任务恢复重放过程中会用到, 这个日志也会持续增长,达到阈值以后滚动生成新的并且清楚旧文件;

原因总结


在增量checkpoint过程中,虽然sst文件所保存的状态数据大小保持动态平衡,但是LOG日志和MANIFEST文件仍然会当向持续增长,所以checkpoint会越来越大,越来越慢。

解决办法


1. 在生产环境关闭Rocksdb日志(保持state.backend.rocksdb.log.level的默认配置即可);

2. 设置manifest文件的滚动阈值,我设置的是10485760byte;

问题解决。

这篇关于【Flink系列】- RocksDB增量模式checkpoint大小持续增长的问题及解决的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170807

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁