论文研读|Protecting Intellectual Property of Deep Neural Networks with Watermarking

本文主要是介绍论文研读|Protecting Intellectual Property of Deep Neural Networks with Watermarking,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

  • 论文信息
  • 文章简介
  • 研究动机
  • 研究方法
    • 水印生成
    • 水印嵌入
    • 版权验证
  • 实验结果
    • 有效性(Effectiveness)
    • 高效性(Converge Speed)
    • 保真度(Functionality)
    • 鲁棒性(Robustness)
      • Anti-剪枝攻击(Pruning)
      • Anti-微调攻击(Fine-tuning)
    • 安全性(Security)
      • Anti-模型逆向攻击(Model Inversion)
  • 方法评估
  • 相关文献


论文信息

论文名称:Protecting Intellectual Property of Deep Neural Networks with Watermarking
作者:IBM Research 团队
发表年份:2018年
发表会议:ASIACCS

文章简介

本文是第一篇提出「黑盒模型水印」的文章,文章借鉴模型后门攻击的思想,通过构造触发集的方式,将水印嵌入到模型中;在版权验证阶段,验证者通过输入触发集中的图片,验证水印的存在与否。

研究动机

基于白盒水印的版权认证需要验证者掌握模型的结构和参数,而在现实生活中,模型往往以 API 接口的形式被调用,于是基于白盒水印的应用场景受限。基于此,本文便提出「黑盒水印」的思想,确保验证者在模型结构和参数未知的情况下,验证水印的存在与否。
在这里插入图片描述

研究方法

考虑到在验证阶段无法获取模型结构和参数信息,本文提出利用输入与输出的映射关系嵌入水印,即给定特定的水印图像,模型若能够输出预设的水印标签,则认为该模型含有水印。其中,水印图像水印标签构成触发集。
在这里插入图片描述

本文提出的完整水印框架如上图,分为「(1)水印生成(2)水印嵌入和(3)版权验证」三个阶段。

水印生成

本文借鉴AI安全中后门攻击的思想,将水印嵌入过程看作模型对另一功能的学习,因此,水印嵌入之前要构造触发集,触发集是基于训练集中的部分训练样本改造以后的样本,图像分类任务的训练样本即为图像和它对应的标签。所以,在水印生成阶段,要分别对图像和标签进行改造,将图像变换为水印图像,并修改对应的标签为水印标签

本文将水印标签预设为airplane。关于图像变换方法,本文提出如下三种,分别是(b) W M c o n t e n t WM_{content} WMcontent:在原始图像上添加有意义的内容(本文中使用灰色固定位置的TEST字样)(c) W M u n r e l a t e d WM_{unrelated} WMunrelated:将原始图像替换为训练集外的图像(本文中使用手写体图像1)(d) W M n o i s e WM_{noise} WMnoise:在原始图像上添加预设的噪声(本文中使用的高斯噪声)
在这里插入图片描述
之所以选择不同方式对图像进行变换,是为了测试DNN对于所要嵌入水印的学习能力。

水印嵌入

构造触发集之后,将它与其余训练数据混合,共同作为模型的训练样本,模型在训练过程中完成水印的嵌入,完整流程如下:
在这里插入图片描述

版权验证

D w m D_{wm} Dwm中的 x w m x_{wm} xwm输入可疑模型中,若模型的预测标签为 y w m y_{wm} ywm,说明该模型含有水印,证实了模型被窃取的事实。

实验结果

应用场景:图像分类任务
数据集:MNIST & CIFAR-10

有效性(Effectiveness)

在这里插入图片描述

高效性(Converge Speed)

在训练期间,添加水印的模型收敛速度与不添加水印的模型持平,说明水印的添加对训练代价的影响程度较低。
在这里插入图片描述

保真度(Functionality)

添加水印的模型对原始任务的性能影响较低,说明水印具有较好的保真度。
在这里插入图片描述

鲁棒性(Robustness)

本文主要对水印的抗剪枝攻击和抗微调攻击两个角度进行鲁棒性评估。

Anti-剪枝攻击(Pruning)

结合Table2观察发现,在保证模型可用的情况下,剪枝攻击对水印的影响程度较小。
在这里插入图片描述

Anti-微调攻击(Fine-tuning)

在这里插入图片描述

安全性(Security)

安全性的目标是衡量嵌入的水印是否易于被未经授权的各方识别或修改。这里通过水印的抗模型逆向攻击能力对水印的安全性进行评估。

Anti-模型逆向攻击(Model Inversion)

模型逆向攻击旨在通过模型的输出逆推出训练数据,从而暴露水印。在本文的场景中,模型逆向攻击的目标就是在攻击者已知水印标签的情况下,逆推出对输入图像的变换,即重构出水印图像,从下图可以看出,此种水印方法能够很好地抵御该攻击方式。
在这里插入图片描述
在这里插入图片描述

方法评估

(1)该方法需要掌握模型的API调用接口,若模型为非公开服务状态,此方法失效。
(2)模型窃取攻击:攻击者可以利用查询访问和结果机密性之间的关系来窃取机器学习模型的参数。使用本文方法添加水印的模型仍有被窃取的风险。 [ 53 ] ^{[53]} [53]
(3)逃逸攻击:由于该方法是基于API查询的方式验证水印的存在与否,因此,若攻击者识别出验证者的异常查询并中断查询,该水印框架就会失效。 [ 39 ] ^{[39]} [39]


相关文献

[39] Meng et al. MagNet: a Two-Pronged Defense against Adversarial Examples. CCS, 2017.
[53] Florian Tramer et al. Stealing Machine Learning Models via Prediction APIs. USENIX, 2016.

这篇关于论文研读|Protecting Intellectual Property of Deep Neural Networks with Watermarking的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169669

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

vue 父组件调用子组件的方法报错,“TypeError: Cannot read property ‘subDialogRef‘ of undefined“

vue 父组件调用子组件的方法报错,“TypeError: Cannot read property ‘subDialogRef’ of undefined” 最近用vue做的一个界面,引入了一个子组件,在父组件中调用子组件的方法时,报错提示: [Vue warn]: Error in v-on handler: “TypeError: Cannot read property ‘methods

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

Cannot read property ‘length‘ of null while opening vscode terminal

同一问题地址:Cannot read property ‘length’ of null while opening vscode terminal 问题描述 One day, 我在ubuntu 18.04下用vscode打开一个项目,并想和往常一样在vscode使用终端,发现报错Cannot read property 'length' of null。 解决 打开setting.jso