【译】PCL官网教程翻译(25):使用StatisticalOutlierRemoval过滤器 - Removing outliers using a StatisticalOutlierRemova

本文主要是介绍【译】PCL官网教程翻译(25):使用StatisticalOutlierRemoval过滤器 - Removing outliers using a StatisticalOutlierRemova,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网页查看。

使用StatisticalOutlierRemoval过滤器

在本教程中,我们将学习如何使用统计分析技术从点云数据集中移除有噪声的测量值,例如离群值。

背景

激光扫描通常产生点云数据集的点密度不同。此外,测量误差会导致稀疏异常值,从而进一步破坏结果。这使得对局部点云特征(如表面法线或曲率变化)的估计变得复杂,从而导致错误的值,进而可能导致点云配准失败。通过对每个点的邻域进行统计分析,并对不符合一定标准的邻域进行修剪,可以解决其中的一些问题。我们的稀疏离群点去除是基于对输入数据集中相邻点距离分布的计算。对于每个点,我们计算它到它所有邻居的平均距离。通过假设得到的分布是高斯分布,具有一个平均值和一个标准差,所有的点的平均距离都在一个由全局距离平均值和标准差定义的区间之外,可以认为是离群点,并从数据集中进行裁剪。
下图显示了稀疏离群点分析和去除的效果:原始数据集显示在左侧,结果数据集显示在右侧。该图显示了一个点附近滤波前后的平均k近邻距离。
在这里插入图片描述

代码

首先,下载数据集table_scene_lms400.pcd,将它保存到磁盘的某个地方。
然后,在您喜欢的编辑器中创建一个文件,例如statistical_removal.cpp,并将以下内容放入其中:

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/statistical_outlier_removal.h>int
main (int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);//填充点云数据pcl::PCDReader reader;//将下面的路径替换为您保存文件的路径reader.read<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);std::cerr << "Cloud before filtering: " << std::endl;std::cerr << *cloud << std::endl;// 创建筛选对象pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;sor.setInputCloud (cloud);sor.setMeanK (50);sor.setStddevMulThresh (1.0);sor.filter (*cloud_filtered);std::cerr << "Cloud after filtering: " << std::endl;std::cerr << *cloud_filtered << std::endl;pcl::PCDWriter writer;writer.write<pcl::PointXYZ> ("table_scene_lms400_inliers.pcd", *cloud_filtered, false);sor.setNegative (true);sor.filter (*cloud_filtered);writer.write<pcl::PointXYZ> ("table_scene_lms400_outliers.pcd", *cloud_filtered, false);return (0);
}

解释

现在,让我们逐个分解代码。
下面几行代码将从磁盘读取点云数据。

  // 填充点云数据pcl::PCDReader reader;//将下面的路径替换为您保存文件的路径reader.read<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);

然后,创建一个pcl::StatisticalOutlierRemoval过滤器。每个点要分析的邻居数量设置为50,标准偏差乘数为1。这意味着,所有距离查询点的平均距离大于1个标准差的点都将被标记为离群点并删除。计算输出并将其存储在cloud_filtered中。

  //创建筛选对象pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;sor.setInputCloud (cloud);sor.setMeanK (50);sor.setStddevMulThresh (1.0);sor.filter (*cloud_filtered);

其余的数据(inliers)被写入磁盘以供以后检查。

  pcl::PCDWriter writer;writer.write<pcl::PointXYZ> ("table_scene_lms400_inliers.pcd", *cloud_filtered, false);

然后,使用相同的参数调用过滤器,但输出为负值,以获得离群值(例如,被过滤的点)。

  sor.setNegative (true);sor.filter (*cloud_filtered);

然后数据被写回磁盘。

 writer.write<pcl::PointXYZ> ("table_scene_lms400_outliers.pcd", *cloud_filtered, false);

编译和运行程序

添加以下行到您的CMakeLists.txt文件:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(statistical_removal)find_package(PCL 1.2 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (statistical_removal statistical_removal.cpp)
target_link_libraries (statistical_removal ${PCL_LIBRARIES})

完成可执行文件之后,就可以运行它了。只是做的事:

$ ./statistical_removal

你会看到类似的东西:

Cloud before filtering:
header:
seq: 0
stamp: 0.000000000
frame_id:
points[]: 460400
width: 460400
height: 1
is_dense: 0Cloud after filtering:
header:
seq: 0
stamp: 0.000000000
frame_id:
points[]: 429398
width: 429398
height: 1
is_dense: 0

这篇关于【译】PCL官网教程翻译(25):使用StatisticalOutlierRemoval过滤器 - Removing outliers using a StatisticalOutlierRemova的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/168830

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti