本文主要是介绍【译】PCL官网教程翻译(25):使用StatisticalOutlierRemoval过滤器 - Removing outliers using a StatisticalOutlierRemova,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
英文原网页查看。
使用StatisticalOutlierRemoval过滤器
在本教程中,我们将学习如何使用统计分析技术从点云数据集中移除有噪声的测量值,例如离群值。
背景
激光扫描通常产生点云数据集的点密度不同。此外,测量误差会导致稀疏异常值,从而进一步破坏结果。这使得对局部点云特征(如表面法线或曲率变化)的估计变得复杂,从而导致错误的值,进而可能导致点云配准失败。通过对每个点的邻域进行统计分析,并对不符合一定标准的邻域进行修剪,可以解决其中的一些问题。我们的稀疏离群点去除是基于对输入数据集中相邻点距离分布的计算。对于每个点,我们计算它到它所有邻居的平均距离。通过假设得到的分布是高斯分布,具有一个平均值和一个标准差,所有的点的平均距离都在一个由全局距离平均值和标准差定义的区间之外,可以认为是离群点,并从数据集中进行裁剪。
下图显示了稀疏离群点分析和去除的效果:原始数据集显示在左侧,结果数据集显示在右侧。该图显示了一个点附近滤波前后的平均k近邻距离。
代码
首先,下载数据集table_scene_lms400.pcd,将它保存到磁盘的某个地方。
然后,在您喜欢的编辑器中创建一个文件,例如statistical_removal.cpp,并将以下内容放入其中:
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/statistical_outlier_removal.h>int
main (int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);//填充点云数据pcl::PCDReader reader;//将下面的路径替换为您保存文件的路径reader.read<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);std::cerr << "Cloud before filtering: " << std::endl;std::cerr << *cloud << std::endl;// 创建筛选对象pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;sor.setInputCloud (cloud);sor.setMeanK (50);sor.setStddevMulThresh (1.0);sor.filter (*cloud_filtered);std::cerr << "Cloud after filtering: " << std::endl;std::cerr << *cloud_filtered << std::endl;pcl::PCDWriter writer;writer.write<pcl::PointXYZ> ("table_scene_lms400_inliers.pcd", *cloud_filtered, false);sor.setNegative (true);sor.filter (*cloud_filtered);writer.write<pcl::PointXYZ> ("table_scene_lms400_outliers.pcd", *cloud_filtered, false);return (0);
}
解释
现在,让我们逐个分解代码。
下面几行代码将从磁盘读取点云数据。
// 填充点云数据pcl::PCDReader reader;//将下面的路径替换为您保存文件的路径reader.read<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);
然后,创建一个pcl::StatisticalOutlierRemoval过滤器。每个点要分析的邻居数量设置为50,标准偏差乘数为1。这意味着,所有距离查询点的平均距离大于1个标准差的点都将被标记为离群点并删除。计算输出并将其存储在cloud_filtered中。
//创建筛选对象pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;sor.setInputCloud (cloud);sor.setMeanK (50);sor.setStddevMulThresh (1.0);sor.filter (*cloud_filtered);
其余的数据(inliers)被写入磁盘以供以后检查。
pcl::PCDWriter writer;writer.write<pcl::PointXYZ> ("table_scene_lms400_inliers.pcd", *cloud_filtered, false);
然后,使用相同的参数调用过滤器,但输出为负值,以获得离群值(例如,被过滤的点)。
sor.setNegative (true);sor.filter (*cloud_filtered);
然后数据被写回磁盘。
writer.write<pcl::PointXYZ> ("table_scene_lms400_outliers.pcd", *cloud_filtered, false);
编译和运行程序
添加以下行到您的CMakeLists.txt文件:
cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(statistical_removal)find_package(PCL 1.2 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (statistical_removal statistical_removal.cpp)
target_link_libraries (statistical_removal ${PCL_LIBRARIES})
完成可执行文件之后,就可以运行它了。只是做的事:
$ ./statistical_removal
你会看到类似的东西:
Cloud before filtering:
header:
seq: 0
stamp: 0.000000000
frame_id:
points[]: 460400
width: 460400
height: 1
is_dense: 0Cloud after filtering:
header:
seq: 0
stamp: 0.000000000
frame_id:
points[]: 429398
width: 429398
height: 1
is_dense: 0
这篇关于【译】PCL官网教程翻译(25):使用StatisticalOutlierRemoval过滤器 - Removing outliers using a StatisticalOutlierRemova的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!