手把手教你用Python网络爬虫爬取新房数据

2023-10-08 23:50

本文主要是介绍手把手教你用Python网络爬虫爬取新房数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

击上方“Python爬虫与数据挖掘”,进行关注

回复“书籍”即可获赠Python从入门到进阶共10本电子书

念天地之悠悠,独怆然而涕下。

项目背景

大家好,我是J哥。

新房数据,对于房地产置业者来说是买房的重要参考依据,对于房地产开发商来说,也是分析竞争对手项目的绝佳途径,对于房地产代理来说,是踩盘前的重要准备。

今天J哥以「惠民之家」为例,手把手教你利用Python将惠州市新房数据批量抓取下来,共采集到近千个楼盘,包含楼盘名称、销售价格、主力户型、开盘时间、容积率、绿化率等「41个字段」。数据预览如下:

后台回复「新房」二字,可领取本文代码。

项目目标

惠民之家首页网址:

http://www.fz0752.com/

新房列表网址:

http://www.fz0752.com/project/list.shtml

选择一个新房并点击「详情信息」即可找到目标字段:

项目准备

软件:Pycharm

第三方库:requests,fake_useragent,lxml

网站地址:http://www.fz0752.com/

网页分析

列表页分析

打开新房列表网页,点击「下一页」后,网址变成:

http://www.fz0752.com/project/list.shtml?state=&key=&qy=&area=&danjia=&func=&fea=&type=&kp=&mj=&sort=&pageNO=2

很显然,这是静态网页,翻页参数为「pageNO」,区域参数为「qy」,其余参数也很好理解,点击对应筛选项即可发现网页链接变化。咱们可以通过遍历区域和页码,将新房列表的房源URL提取下来,再遍历这些URL,抓取到每个房源的详情信息。

详情页分析

选择一个新房URL,点击进去,链接如下:

http://newhouse.fz0752.com/fontHtml/html/project/00020170060.html

即这个新房的id为「00020170060」,再点击详情信息,链接变为:

http://newhouse.fz0752.com/project/detail.shtml?num=20170060

即这个新房的「详情信息」的id为「20170060」,我们可以大胆假设这个id就是新房id截取的一部分。多找几个新房点击尝试,很容易验证这个规律。

反爬分析

相同的ip地址频繁访问同一个网页会有被封风险,本文采用fake_useragent,将随机生成的User-Agent请求头去访问网页,将减少ip封锁的风险。

代码实现

导入爬虫相关库,定义一个主函数,构建区域列表(不同区域对应不用的区域id),遍历并用requests去请求由区域参数和页码参数拼接的URL。这里将页码设置50上限,当遍历的某个房源URL长度为0(即不存在新房数据)时,直接break,让程序进行下一个区域的遍历,直至所有数据抓取完毕,程序停止。

# -*- coding = uft-8 -*-
# @Time : 2020/12/21 9:29 下午
# @Author : J哥
# @File : newhouse.pyimport csv
import time
import random
import requests
import traceback
from lxml import etree
from fake_useragent import UserAgentdef main():#46:惠城区,47:仲恺区,171:惠阳区,172:大亚湾,173:博罗县,174:惠东县,175:龙门县qy_list = [46,47,171,172,173,174,175]for qy in qy_list:   #遍历区域for page in range(1,50):   #遍历页数url = f'http://www.fz0752.com/project/list.shtml?state=&key=&qy={qy}&area=&danjia=&func=&fea=&type=&kp=&mj=&sort=&pageNO={page}'response = requests.request("GET", url, headers = headers,timeout = 5)print(response.status_code)if response.status_code == 200:re = response.content.decode('utf-8')print("正在提取" + str(qy) +'第' + str(page) + "页")#time.sleep(random.uniform(1, 2))print("-" * 80)# print(re)parse = etree.HTML(re)get_href(parse,qy)num = ''.join(parse.xpath('//*[@id="parent-content"]/div/div[6]/div/div[1]/div[2]/div[1]/div[2]/div[1]/div[1]/a/@href'))print(len(num))if len(num) == 0:breakif __name__ == '__main__':ua = UserAgent(verify_ssl=False)headers = {"User-Agent": ua.random}time.sleep(random.uniform(1, 2))main()

发送请求,获取新房列表网页,并解析到所有新房URL,同时将新房id替换为详情信息id。在程序运行中发现有少数新房URL不一致,因此这里做了判断,修改后可以获取完整的详情信息id,并拼接出对应的URL。

def get_href(parse,qy):items = parse.xpath('//*[@id="parent-content"]/div/div[6]/div/div[1]/div[2]/div')try:for item in items:href = ''.join(item.xpath('./div[2]/div[1]/div[1]/a/@href')).strip()print("初始href为:",href)#print(len(href))if len(href) > 25:href1 = 'http://newhouse.fz0752.com/project/detail.shtml?num=' + href[52:].replace(".html","")else:href1 = 'http://newhouse.fz0752.com/project/detail.shtml?num=' + href[15:]print("详情href为:",href1)try:get_detail(href1,qy)except:passexcept Exception:print(traceback.print_exc())

打印结果如下:

详情信息URL找到后,定义一个函数去请求详情页数据,同时携带qy参数,最后将其保存到csv中。

def get_detail(href1,qy):time.sleep(random.uniform(1, 2))response = requests.get(href1, headers=headers,timeout = 5)if response.status_code == 200:source = response.texthtml = etree.HTML(source)

开始解析详情页中的各个字段,这里用到xpath进行数据解析,由于需要解析的字段太多,高达41个,限于篇幅,以下仅给出部分字段解析代码。当然,其他字段解析基本一样。

#项目状态
try:xmzt = html.xpath('//*[@id="parent-content"]/div/div[3]/div[3]/div[1]/div[1]/text()')[0].strip()
except:xmzt = None
#项目名称
try:name = html.xpath('//*[@id="parent-content"]/div/div[3]/div[3]/div[1]/h1/text()')[0].strip()
except:name = None
#项目简介
ps = html.xpath('//*[@id="parent-content"]/div/div[3]/div[5]/div[2]/div')
for p in ps:try:xmjj = p.xpath('./p[1]/text()')[0].strip()except:xmjj = None
infos = html.xpath('//*[@id="parent-content"]/div/div[3]/div[5]/div[1]/div/table/tbody')
for info in infos:#行政区域try:xzqy = info.xpath('./tr[1]/td[1]/text()')[0].strip()except:xzqy = None#物业类型try:wylx = info.xpath('./tr[2]/td[1]/text()')[0].strip()except:wylx = None#销售价格try:xsjg = info.xpath('./tr[3]/td[1]/text()')[0].strip()except:xsjg = None······data = {'xmzt':xmzt,'name':name,'xzqy':xzqy,······'qy':qy}print(data)

解析完数据后,将其置于字典中,打印结果如下:然后追加保存为csv:

try:with open('hz_newhouse.csv', 'a', encoding='utf_8_sig', newline='') as fp:fieldnames = ['xmzt','name','xzqy',······,'qy']writer = csv.DictWriter(fp, fieldnames = fieldnames)writer.writerow(data)
except Exception:print(traceback.print_exc())

当然,我们也可以读取csv文件,并写入Excel:

df = pd.read_csv("newhouse.csv",names=['name','xzqy','wylx',······,'state'])
df = df.drop_duplicates()
df.to_excel("newhouse.xlsx",index=False)

总结

  1. 本文基于Python爬虫技术,提供了一种更直观的抓取新房数据的方法。

  2. 不建议抓取太多,容易使得服务器负载,浅尝辄止即可。

  3. 如需本文完整代码,后台回复「新房」两个字即可获取。

------------------- End -------------------

往期精彩文章推荐:

  1. 反爬虫策略手把手教你使用FastAPI来限制接口的访问速率

  2. 一篇文章带你解锁Python库中操作系统级别模块psutil

  3. 盘点5种基于Python生成的个性化语音方法

欢迎大家点赞,留言,转发,转载,感谢大家的相伴与支持

想加入Python学习群请在后台回复【入群

万水千山总是情,点个【在看】行不行

/今日留言主题/

随便说一两句吧~

这篇关于手把手教你用Python网络爬虫爬取新房数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/168819

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定