关系的性质(自反,反自反,对称,反对称,传递)

2023-10-08 20:36

本文主要是介绍关系的性质(自反,反自反,对称,反对称,传递),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自反

若∀a∈A,必有<a,a>∈R,则称R是自反的,(关系矩阵对角线都为1)。

 例:A={1,2,3},R={<1,1,>,<2,2>,<3,3>

反自反

若∀a∈A,必有<a,a>R,则称R是反自反的 

例:A={1,2,3},R={<1,2,>,<1,3>,<2,1,>,<2,3>,<3,1>,<3,2>} 

对称

若<a,b>∈R,必有<b,a>∈R,则称R是对称的,(关系矩阵rij=rji,即为对称矩阵)

例: A={1,2,3},R={<1,2>,<2,1>,<1,1>,<2,2>} R={<1,3>,<3,1,>,<2,3>,<3,2>}

 

反对称

若<a,b>∈R,必有<b,a>∈R,则称R是反对称的(关系矩阵rij和rji不能同时为1,即关于对角线对称的元素不能同时为1)

 例: A={1,2,3},R={<1,2>,<1,3>} R={<1,2>,<2,3>,<3,1>}

传递

若<a,b>∈R、<b,c>∈R,必有<a,c>∈R,则称R是传递的

例: A={1,2,3},R={<1,2>,<2,3>,<1,3>} 

试题 

给定A:{1,2,3,4},考虑A上的关系R,若R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>,<4,4>},则R是( )

A:自反的

B:对称的

C:传递的

D:反自反的

【答案】C

设集合A={a,b,c,d},现有A上的二元关系R={<a,b>,<b,c>,<c,b>,<b,a>},则A是( )

A:自反的

B:对称的

C:反对称的

D:传递的 

【答案】B

下列关于整数集合上的整除关系描述不正确的是( )

A:自反的

B:对称的

C:反对称的

D:传递的 

【答案】B,自反的、反对称的(2能整除4,4不能整除2)、传递的(2能整除4,4能整除8,2一定能整除8)

设R={<1,3>,<1,4>,<2,3>,<3,1>,<3,4>,<4,2>}是A={1,2,3,4}上的关系,说明R是否具有自反、反自反、对称、反对称性质。 

【答案】<1,1>,<2,2,>,<3,3>,<4,4>都∉R,所以R是反自反的,不是自反的

<1,4>∈R,<4,1>∉R,所以R不是对称的

<1,3>∈R,<3,1>∈R,所以R不是反对称的

这篇关于关系的性质(自反,反自反,对称,反对称,传递)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/167833

相关文章

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

异步线程traceId如何实现传递

《异步线程traceId如何实现传递》文章介绍了如何在异步请求中传递traceId,通过重写ThreadPoolTaskExecutor的方法和实现TaskDecorator接口来增强线程池,确保异步... 目录前言重写ThreadPoolTaskExecutor中方法线程池增强总结前言在日常问题排查中,

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

JAVA基础:值传递和址传递

1 值传递和址传递 值传递 方法调用时,传递的实参是一个基本类型的数据 形参改变,实参不变 public static void doSum(int num1,int num2){}main(){doSum(10,20);int i = 10 ;int j = 20 ;doSum(i,j) ;}   public static void t1(int num){num = 20