游戏算法-AOI九宫格python实现

2023-10-08 17:10

本文主要是介绍游戏算法-AOI九宫格python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将空间按照一定的方法进行分割,例如根据AOI范围的大小将整个游戏世界切分为固定大小的格子。当游戏物体位于场景的时候,根据坐标将它放入特定的格子中。

例如玩家1在位置7中,如果游戏内的AOI的范围为1个格子。当我们需要获取这个玩家周围的AOI对象时,只需要遍历7周围9个里面的对象即可。

实体的事件:

  • 进入场景enter:进入一个格子,取出周围9格的对象,向它们发送Enter(我)事件,同时向我发送Enter(对象)事件。
  • 离开场景leave:取出周围9格的对象,向它们发送Leave(我)事件。
  • 移动move:
    • 如果没跨格子,直接取9格的对象,向它们发送移动事件。
    • 如果跨过格子,计算{OldGrid-NewGrid},向它们发送Leave(我)事件,向我发送Leave(对象)事件;计算{NewGrid-OldGrid}集合,向它们发送Enter(我)事件,向我发送Enter(对象事件;计算{NewGrid*OldGrid}集合,向他们发送Move(我)事件。
       

空间分割在计算AOI对象时,只需要遍历周围几个空间格子即可,大大提高了计算效率。

但是该方法也有缺点,格子数和空间大小成为正比,空间越大,所需要的内存空间也越大。

如果玩家数里远远小于空间的格子数,使用这种方法来计算AOI可能比全部遍历效率还差。

实现

实体Entity:有三个事件,enter.leave,move事件

class Entity(object):# 场景实体def __init__(self, eid, x, y):self.id = eid  # 角色IDself.x = xself.y = yself.last_x = -1  # 是用来参与判断实体是否有进入或者离开 AOIself.last_y = -1def __str__(self):return "<{0}, {1}-{2}>".format(self.id, self.x, self.y)def enter(self, eobj):print("{0} enter {1} view".format(eobj, self))def leave(self, eobj):print("{0} leave {1} view".format(eobj, self))passdef move(self, eobj):print("{0} move in {1} view".format(eobj, self))

格子:场景根据大小分成若干格子,每个格子管理一个区域

角色所在的位置,由格子管理

class Grid(object):# 格子def __init__(self, gid, min_x, max_x, min_y, max_y):self.gid = gid  # 格子IDself.min_x = min_x  # 格子坐标x范围self.max_x = max_xself.min_y = min_y  # 格子坐标y范围self.max_y = max_yself.players = set([])  # 角色ID

比如此图,分成36个格子

场景:控制生成格子数量,管理格子和实体对象

class Scene(object):# 场景,由多个格子组成def __init__(self, min_x, max_x, cnts_x, min_y, max_y, cnts_y):self.min_x = min_xself.max_x = max_xself.cnts_x = cnts_x  # X轴方向格子的数量self.min_y = min_yself.max_y = max_yself.cnts_y = cnts_y  # y轴方向格子的数量self.grids = {}  # 管理格子对象self.map_entity = {}  # 管理实体对象

完整代码:

python版本:2.7

# -*- coding: utf-8 -*-class Entity(object):# 场景实体def __init__(self, eid, x, y):self.id = eid  # 角色IDself.x = xself.y = yself.last_x = -1  # 是用来参与判断实体是否有进入或者离开 AOIself.last_y = -1def __str__(self):return "<{0}, {1}-{2}>".format(self.id, self.x, self.y)def enter(self, eobj):print("{0} enter {1} view".format(eobj, self))def leave(self, eobj):print("{0} leave {1} view".format(eobj, self))passdef move(self, eobj):print("{0} move in {1} view".format(eobj, self))class Grid(object):# 格子def __init__(self, gid, min_x, max_x, min_y, max_y):self.gid = gidself.min_x = min_xself.max_x = max_xself.min_y = min_yself.max_y = max_yself.players = set([])  # 角色IDdef __str__(self):return "<{0}, {1}-{2}: {3}>,".format(self.gid, self.min_x, self.min_y, str(self.players))def add(self, eid):self.players.add(eid)def remove(self, eid):self.players.remove(eid)def get_player_ids(self):return list(self.players)class Scene(object):# 场景,由多个格子组成def __init__(self, min_x, max_x, cnts_x, min_y, max_y, cnts_y):self.min_x = min_xself.max_x = max_xself.cnts_x = cnts_x  # X轴方向格子的数量self.min_y = min_yself.max_y = max_yself.cnts_y = cnts_y  # y轴方向格子的数量self.grids = {}self.map_entity = {}  # 实体对象self.init_grid()def __str__(self):res = ""for y in xrange(self.cnts_y):for x in xrange(self.cnts_x):gid = y * self.cnts_x + xres += str(self.grids[gid])res += "\n"return resdef init_grid(self):# 生成格子for y in xrange(self.cnts_y):for x in xrange(self.cnts_x):gid = y * self.cnts_x + xmin_x = self.min_x + x * self.grid_width()max_x = self.min_x + (x + 1) * self.grid_width()min_y = self.min_y + y * self.grid_height()max_y = self.min_y + (y + 1) * self.grid_height()self.grids[gid] = Grid(gid, min_x, max_x, min_y, max_y)def grid_width(self):# 每个格子在x轴方向的宽度return (self.max_x - self.min_x) / self.cnts_xdef grid_height(self):# 得到每个格子在Y轴方向高度return (self.max_y - self.min_y) / self.cnts_ydef get_surround_grids_by_gid(self, gid, include_self=False):# 周边的格子对象surrounds = []grid = self.grids[gid]y, x = divmod(grid.gid, self.cnts_x)for y_i, x_j in ((-1, 1), (-1, 0), (-1, -1), (0, -1), (0, 1), (1, 1), (1, 0), (1, -1)):cal_y = y + y_ical_x = x + x_jif cal_x < 0 or cal_x >= self.cnts_x:continueif cal_y < 0 or cal_y >= self.cnts_y:continuecal_gid = cal_y * self.cnts_x + cal_xsurrounds.append(self.grids[cal_gid])return surroundsdef add_eid_grid(self, eid, gid):self.grids[gid].add(eid)def remove_eid_grid(self, eid, gid):self.grids[gid].remove(eid)def get_eids_by_gid(self, gid):return self.grids[gid].get_player_ids()def get_gid_by_pos(self, x, y):# 通过,x, y得到对应格子IDidx = (x - self.min_x) / self.grid_width()idy = (y - self.min_y) / self.grid_height()gid = idy * self.cnts_x + idxreturn giddef get_surround_eids_by_pos(self, x, y, include_self=False):# 根据一个坐标 得到 周边九宫格之内的全部的 玩家ID集合gid = self.get_gid_by_pos(x, y)grids = self.get_surround_grids_by_gid(gid)eids = []for grid in grids:eids.extend(grid.get_player_ids())if include_self:eids.extend(self.grids[gid].get_player_ids())return eidsdef add_to_grid_by_pos(self, eid, x, y):# 通过坐标 将eid 加入到一个格子中gid = self.get_gid_by_pos(x, y)grid = self.grids[gid]grid.add(eid)return giddef remove_to_grid_by_pos(self, eid, x, y):# 通过坐标 将eid remove到一个格子中gid = self.get_gid_by_pos(x, y)grid = self.grids[gid]grid.remove(eid)def update_pos(self, update_eid, x, y):if update_eid not in self.map_entity:# 首次进入eobj = Entity(update_eid, x, y)self.map_entity[update_eid] = eobjgrip_id = self.add_to_grid_by_pos(update_eid, x, y)eids = self.get_surround_eids_by_pos(x, y)for eid in eids:ob = self.map_entity[eid]ob.enter(eobj)else:eobj = self.map_entity[update_eid]eobj.last_x = eobj.xeobj.last_y = eobj.yeobj.x = xeobj.y = y# 格子内移动old_gid = self.get_gid_by_pos(eobj.last_x, eobj.last_y)new_gid = self.get_gid_by_pos(eobj.x, eobj.y)if old_gid == new_gid:eids = self.get_surround_eids_by_pos(x, y, True)for eid in eids:self.map_entity[eid].move(eobj)else:# 移动格子self.remove_eid_grid(update_eid, old_gid)self.add_eid_grid(update_eid, new_gid)old_surround_gids = self.get_surround_grids_by_gid(old_gid)new_surround_gids = self.get_surround_grids_by_gid(new_gid)# 新格子事件处理for grid in [grid for grid in new_surround_gids if grid not in old_surround_gids]:for eid in grid.get_player_ids():self.map_entity[eid].enter(eobj)# 老格子事件处理for grid in [grid for grid in old_surround_gids if grid not in new_surround_gids]:for eid in grid.get_player_ids():self.map_entity[eid].leave(eobj)for grid in [grid for grid in old_surround_gids if grid in new_surround_gids]:for eid in grid.get_player_ids():self.map_entity[eid].move(eobj)def test():scene = Scene(0, 100, 4, 0, 100, 4)scene.update_pos(1, 0, 0)scene.update_pos(2, 50, 20)scene.update_pos(3, 99, 99)print(scene)print("<25-1> sorround: {0}".format(scene.get_surround_eids_by_pos(25, 1, True)))print("<50-50> sorround: {0}".format(scene.get_surround_eids_by_pos(50, 50, True)))scene.update_pos(3, 25, 1)scene.update_pos(3, 99, 99)test()


 

运行结果:一个场景分成16个格子,大小为100 * 100

<0, 0-0: set([1])>,<1, 25-0: set([])>,<2, 50-0: set([2])>,<3, 75-0: set([])>,
<4, 0-25: set([])>,<5, 25-25: set([])>,<6, 50-25: set([])>,<7, 75-25: set([])>,
<8, 0-50: set([])>,<9, 25-50: set([])>,<10, 50-50: set([])>,<11, 75-50: set([])>,
<12, 0-75: set([])>,<13, 25-75: set([])>,<14, 50-75: set([])>,<15, 75-75: set([3])>,<25-1> sorround: [1, 2]
<50-50> sorround: [3]
<3, 25-1> enter <1, 0-0> view
<3, 25-1> enter <2, 50-20> view
<3, 99-99> leave <1, 0-0> view
<3, 99-99> leave <2, 50-20> view

 深入探索AOI算法:深入探索AOI算法 - 知乎

这篇关于游戏算法-AOI九宫格python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/166770

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服