一些常见分布-正态分布、对数正态分布、伽马分布、卡方分布、t分布、F分布等

2023-10-08 15:36

本文主要是介绍一些常见分布-正态分布、对数正态分布、伽马分布、卡方分布、t分布、F分布等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

正态分布

对数正态分布 

伽马分布

伽马函数

贝塔函数

伽马分布

卡方分布

F分布

t分布

附录

参考文献


        本文主要介绍一些常见的分布,包括正态分布、对数正态分布、伽马分布、卡方分布、F分布、t分布。给出了分布的定义,推导了概率密度函数,以及函数图像。

正态分布

 当n=0,\sigma^2=1,称为标准正态分布,即X\sim N(0,1)

对数正态分布 

        对数正态分布(logarithmic normal distribution)是指一个随机变量的对数服从正态分布,则该随机变量服从对数正态分布。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。

证明

        假设Y服从的正态分布为G(x),概率密度函数为g(x)​,X服从的分布为F(x),概率密度函数为f(x)。显然有G^{'}(x)=g(x),F^{'}(x)=f(x)

下面证明​X的概率密度函数f(x)表达式如上面所示。

        一般我们通过分布函数和概率的定义来证明。

F(x)=P(X\leq x) ,因为Y=lnX​,则X=e^Y,

P(X\leq x)=P(e^Y\leq x)=P(Y\leq lnx)=G(lnx)

F(x)=G(lnx)​,两边对x​求导,得到:

\frac{\mathrm{dF(x)} }{\mathrm{d} x}=\frac{\mathrm{dG(lnx)} }{\mathrm{d} x},即:

f(x)=\frac{g(lnx)}{x},注意到正态分布概率密度函数g(x)如下:

g(x)

代入后,可得到f(x)​表达式如上面所示。

伽马分布
伽马函数

        在介绍伽马分布之前,我们先对伽马函数有一个基本理解,伽马函数如下:

\alpha是自变量。伽马函数图像如下:

 伽马函数图像绘制代码,如下:

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import gammaif __name__ == '__main__':x = np.linspace(-5, 5, 500) # -5到5之间生成500个点y = gamma(x)    # 计算y的值,也就是伽马函数的值plt.plot(x, y)plt.show()

        为了后面方便推导卡方分布,这里我们证明 \Gamma(\frac{1}{2})=\sqrt{\pi}

下面利用标准正态分布的概率密度函数曲线下的面积为1来证明。即:

\int_{-\infty }^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx=1

由正态分布对称性,得到

2\int_{0 }^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx=1

t=\frac{x^2}{2}进行换元,

2\int_{0 }^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-t}d\sqrt{2t}=1

2\int_{0 }^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-t}\frac{1}{\sqrt{2t}}dt=1

\int_{0 }^{+\infty}\frac{1}{\sqrt{\pi t}}e^{-t}dt=1

\int_{0 }^{+\infty}\frac{1}{\sqrt{t}}e^{-t}dt=\sqrt{\pi}

因为伽马函数如下:

知道

\Gamma(\frac{1}{2})=\int_{0 }^{+\infty}\frac{1}{\sqrt{t}}e^{-t}dt=\sqrt{\pi}

伽马函数还有其他很多的函数表达式,这里不再累述。 

贝塔函数

        在概率统计和其他应用学科中会经常用到伽玛函数和贝塔函数,有的反常积分的计算最后也会归结为贝塔函数或伽玛函数。贝塔函数又称为第一类欧拉积分,而第二类欧拉积分就是大名鼎鼎的伽玛函数Γ(x。贝塔函数具有很好的性质,以及实用的递推公式,另外需要注意的是伽玛函数和贝塔函数之间的关系。贝塔函数如下:

贝塔函数是一个积分形式,\alpha,\beta为参数。

        下面推导伽马函数与贝塔函数之间存在的关系。我们先给出他们的关系:

B(\alpha, \beta )=\frac{\Gamma(\alpha)\Gamma(\beta )}{\Gamma(\alpha +\beta )}

由伽马函数:

得到

\Gamma(\alpha )\Gamma(\beta )=\int_{0}^{+\infty}t^{\alpha-1}e^{-t}dt\times\int_{0}^{+\infty}s^{\beta-1}e^{-s}ds

=\int_{0}^{+\infty}\int_{0}^{+\infty}t^{\alpha-1}s^{\beta-1}e^{-(t+s)}dtds

使用如下积分换元t=uv,s=u(1-v),即

u=s+t,v=\frac{t}{s+t}

容易得到u\in(0,+\infty),v\in(0,1),并且s=0时,v=1,s \to +\infty时,v=0。变换前后微元关系如下:

dtds=\begin{vmatrix} \frac{\partial t}{\partial u} & \frac{\partial t}{\partial v} \\ \frac{\partial s}{\partial u} & \frac{\partial s}{\partial v} \end{vmatrix}dudv=\begin{vmatrix} v & u\\ 1-v & -u \end{vmatrix}dudv

=[-uv-u(1-v)]dudv=-ududv

则换元后,原式如下:

\Gamma(\alpha )\Gamma(\beta )=

=\int_{0}^{+\infty}\int_{1}^{0}(uv)^{\alpha-1}[u(1-v)]^{\beta-1}e^{-u}(-u)dudv

=\int_{0}^{+\infty}\int_{0}^{1}(uv)^{\alpha-1}[u(1-v)]^{\beta-1}e^{-u}(u)dudv

=\int_{0}^{+\infty}u^{\alpha+\beta-1}e^{-u}du\times\int_{0}^{1}v^{\alpha-1}(1-v)^{\beta-1}dv

=\Gamma(\alpha+\beta)B(\alpha,\beta)

即:

B(\alpha, \beta )=\frac{\Gamma(\alpha)\Gamma(\beta )}{\Gamma(\alpha +\beta )}

        为了直观地理解贝塔函数,下面我们绘制出贝塔函数的三维曲面图像。代码如下:

import numpy as np
from scipy.special import beta
import matplotlib.pyplot as pltif __name__ == '__main__':# 创建一个网格x, y = np.meshgrid(np.linspace(0.1, 1, 100), np.linspace(0.1, 1, 100))print('x=', '\n', x)print('y=', '\n', y)z = beta(x, y)print('z=', '\n', z)plt.rcParams['font.sans-serif'] = ['Simhei']  # 显示中文fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')ax.tick_params(axis="both", labelsize=12)ax.plot_surface(x, y, z, cmap='viridis')ax.set_xlabel('x', fontsize=13)ax.set_ylabel('y', fontsize=13)ax.set_zlabel('z')ax.set_title('贝塔函数图像')plt.show()

运行结果,如下:

伽马分布

​​​

        从定义可以看到,伽马分布的概率密度函数的分母中\Gamma(\alpha )就是伽马函数。 可以通过scipy提供的统计库stats,绘制出正态分布、对数正态分布、伽马分布的概率密度函数曲线,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma as gamma_dis
from scipy.stats import lognorm
from scipy.stats import normif __name__ == '__main__':alpha = 2  # 伽马分布的形状参数theta = 2  # 伽马分布的比例参数# 创建一个 sample spacex = np.linspace(0, 10, 200)# 计算概率密度函数 (PDF)gamma_pdf = gamma_dis.pdf(x, alpha, scale=theta)  # 伽马分布概率密度函数log_norm_pdf = lognorm.pdf(x, loc=0, s=1)  # 对数正态分布概率密度函数norm_pdf = norm.pdf(x, loc=0, scale=1)  # 正态分布概率密度函数plt.rcParams['font.sans-serif'] = ['Simhei']  # 显示中文# 绘制伽马分布曲线plt.plot(x, gamma_pdf)plt.plot(x, log_norm_pdf)plt.plot(x, norm_pdf)plt.legend(['伽马分布', '对数正态分布', '正态分布'])  # 设置图例plt.title('概率密度函数曲线')plt.xlabel('x')plt.ylabel('概率密度函数值')plt.show()

运行结果如下: 

​​​

伽马分布有如下重要的性质:

(1)设随机变量X\sim Ga(\alpha_1,\lambda )Y\sim Ga(\alpha_2,\lambda ),且X,Y相互独立,则Z=X+Y\sim Ga(\alpha_1+\alpha_2,\lambda )

证明

        假设随机变量Z的分布为F(z),概率密度函数为f_Z(z),随机变量X,Y的概率密度函数分别为f_X(x)f_Y(x)。两者的联合概率密度函数为f_{XY}(x,y),因为X,Y相互独立,显然有:

f_{XY}(x,y)=f_X(x)f_Y(x)

因为

X,Y取值都在(0,+\infty),所以Z的取值也在(0,+\infty),从而当z\leq 0时,f_Z(z)=0

z> 0时,F(z)=P(Z\leq z)=P(X+Y\leq z),这里将z看成常数,有

F(z)=\iint_{x+y\leq z}f_{XY}(x,y)dxdy

=\iint_{x+y\leq z}f_X(x)f_Y(y)dxdy

=\int_{-\infty}^{+\infty}f_X(x)dx\int_{-\infty}^{z-x}f_Y(y)dy

使用换元t=x+y,将x看陈常数,有

y\in(-\infty,z-x),则t\in(-\infty,z),且dy=dt

得到

F(z)=\int_{-\infty}^{+\infty}f_X(x)dx\int_{-\infty}^{z}f_Y(t-x)dt

F(z)=\int_{-\infty}^{z}[\int_{-\infty}^{+\infty}f_X(x)f_Y(t-x)dx]dt

两边对z求导,得到

f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)dx

这就是卷积公式。因为

X\sim Ga(\alpha_1,\lambda )Y\sim Ga(\alpha_2,\lambda ),代入得到

f_Z(z)=\int_{0}^{z}\frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)}x^{\alpha_1-1}e^{-\lambda x}\frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)}(z-x)^{\alpha_2-1}e^{-\lambda (z-x)}dx

f_Z(z)=\frac{\lambda^{\alpha_1+\alpha_2}e^{-\lambda z}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\int_{0}^{z}x^{\alpha_1-1}(z-x)^{\alpha_2-1}dx

使用换元x=zt,当x\in(0,z)时,t\in(0,1),并且dx=zdt,则

f_Z(z)=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}e^{-\lambda z}\int_{0}^{1}(zt)^{\alpha_1-1}(z-zt)^{\alpha_2-1}zdt

=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}z^{\alpha_1+\alpha_2-1}e^{-\lambda z}\int_{0}^{1}t^{\alpha_1-1}(1-t)^{\alpha_2-1}dt

=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}z^{\alpha_1+\alpha_2-1}e^{-\lambda z}B(\alpha_1,\alpha_2)

根据B(\alpha, \beta )=\frac{\Gamma(\alpha)\Gamma(\beta )}{\Gamma(\alpha +\beta )},得到

f_Z(z)=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)}z^{\alpha_1+\alpha_2-1}e^{-\lambda z},所以

Z=X+Y\sim Ga(\alpha_1+\alpha_2,\lambda )

卡方分布

        假设n个相互独立的随机变量X_1,X_2,...,X_n​​​,均服从标准正态分布(也称独立同分布于标准正态分布)N(0,1)​​​。则这n个服从标准正态分布的随机变量的平方和Q=\sum_{i=1}^nX_i^2​​​构成一个新的随机变量,其分布规律称为卡方分布(chi-square distribution),记作Q\sim \chi^2(n)​​​,n称为卡方分布的自由度(degree of freedom),记作df=n

        这个分布由麦克斯韦(James Clerk Maxwell, 1831-1879)在研究空气分子的运动速度的分布时发现的,他发现分子运动速度v​​​的平方服从自由度为3的卡方分布,即v^2\sim \chi^2(3)​​​。后来又有多人提出这种分布,例如弗里德里希·罗伯特·海尔默特(Friedrich Robert Helmert, 1843-1917)于1875年,故卡方分布有时(在德国常见,因海尔默特是德国人)也称海尔默特分布;另外,这一结果被英国生物统计学家、优生学家、数理统计学创始人和社会达尔文主义理论家卡尔·皮尔逊(Karl Pearson, 1857-1936)推广并于1900年发表。

        卡方分布\chi^2(n)​​​的概率密度函数

f(x,n)=\frac{x^{\frac{n}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}

下面来推导。

(1)当df=1时,Q=X_1^2。卡方分布的概率密度函数变为:

f(x,1)=\frac{e^{-\frac{x}{2}}}{\sqrt{2x} \Gamma(\frac{1}{2})}=\frac{1}{\sqrt{2\pi x}}e^{-\frac{x}{2}}

假设随机变量Q的分布函数为F(x),概率密度函数为f(x),随机变量X_1的分布函数为F_{X_1}(x),概率密度函数为f_{X_1}(x),随机变量X_2的分布函数为F_{X_2}(x),概率密度函数为f_{X_2}(x)。因为X_1X_2服从标准正态分布,有

f_{X_1}(x)=f_{X_2}(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}

因为F(x)=P(Q<x)=P(X_1^2<x)=P(-\sqrt{x}<X_1<\sqrt{x})

=P(X_1<\sqrt{x})-P(X_1<-\sqrt{x})=F_{X_1}(\sqrt{x})-F_{X_2}(-\sqrt{x})

两边对x求导,

f(x)=\frac{1}{2\sqrt{x}}(f_{X_1}(\sqrt{x})+f_{X_2}(-\sqrt{x}))

因为f_{X_1}(x)=f_{X_2}(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},所以:

f(x)=\frac{1}{2\sqrt{x}}(\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}+\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}})

f(x)=\frac{1}{\sqrt{2\pi x}}e^{-\frac{x}{2}}

事实上,它是\alpha=\frac{1}{2},\lambda=\frac{1}{2}的伽马分布,即Q\sim Ga(\frac{1}{2},\frac{1}{2})。根据如下伽马分布的概率密度函数,很容易得出。

​​

(2)当df=n时,Q=\sum_{i=1}^nX_i^2,由上面的结论知道,X_i^2\sim Ga(\frac{1}{2},\frac{1}{2})。另外因为X_1,X_2,...,X_n相互独立,所以X_1^2,...,X_i^2,...,X_n^2也相互独立。根据之前证明的如下结论:

如果随机变量X\sim Ga(\alpha_1,\lambda )Y\sim Ga(\alpha_2,\lambda ),且X,Y相互独立,则Z=X+Y\sim Ga(\alpha_1+\alpha_2,\lambda )

得到Q=\sum_{i=1}^nX_i^2服从Ga(\frac{n}{2},\frac{1}{2}),代入伽马分布,得到如下卡方分布

f(x,n)=\frac{x^{\frac{n}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}

从结论来看,卡方分布是伽马分布的一个特例,即Ga(\frac{n}{2},\frac{1}{2})。也就是说

\chi^2(n)=Ga(\frac{n}{2},\frac{1}{2})

        为了直观的观测卡方分布,下面使用python代码绘制卡方分布曲线。代码如下:

import numpy as np
from scipy.special import beta
import matplotlib.pyplot as plt
from scipy import statsif __name__ == '__main__':# # 创建一个网格# x, y = np.meshgrid(np.linspace(0.1, 1, 100), np.linspace(0.1, 1, 100))# print('x=', '\n', x)# print('y=', '\n', y)# z = beta(x, y)# print('z=', '\n', z)#plt.rcParams['font.sans-serif'] = ['Simhei']  # 显示中文# fig = plt.figure(figsize=(10, 8))# ax = fig.add_subplot(111, projection='3d')# ax.tick_params(axis="both", labelsize=12)# ax.plot_surface(x, y, z, cmap='viridis')# ax.set_xlabel('x', fontsize=13)# ax.set_ylabel('y', fontsize=13)# ax.set_zlabel('z')# ax.set_title('贝塔函数图像')# plt.show()X = np.linspace(0.1, 14, 500)plt.subplots(figsize=(8, 5))plt.plot(X, stats.chi2.pdf(X, df=1), label="1 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=2), label="2 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=4), label="4 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=6), label="6 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=11), label="11 d.o.f")plt.title("卡方分布")plt.legend()plt.show()

代码中绘制了自由度为1,2,3,4,11的5个卡方分布,运行结果如下:

F分布

        由卡方分布的定义知道,F分布定义可以转换为:如果X\sim \chi^2(n_1) ,Y\sim \chi^2(n_2),则

F=\frac{X}{n_1}/\frac{Y}{n_2}为F分布。概率密度函数的证明参见参考文献。

 代码如下:

    X = np.linspace(0.1, 4, 500)plt.plot(X, stats.f.pdf(X, 4,4), label="n1=4,n2=4")plt.plot(X, stats.f.pdf(X, 4,10), label="n1=4,n2=10")plt.plot(X, stats.f.pdf(X, 10,4), label="n1=10,n2=4")plt.plot(X, stats.f.pdf(X, 10,10), label="n1=10,n2=10")plt.title("F分布")plt.legend()plt.show()

 运行结果如下:

t分布

代码如下:

    plt.rcParams["axes.unicode_minus"] = False  # 设置显示中文后,负号显示受影响,显示负号X = np.linspace(-5, 5, 1500)plt.plot(X, stats.t.pdf(X, 1), label="n=4")plt.plot(X, stats.t.pdf(X, 2), label="n=2")plt.plot(X, stats.t.pdf(X, 4), label="n=4")plt.plot(X, stats.t.pdf(X, 8), label="n=8")plt.title("t分布")plt.legend()plt.show()

 运行结果如下:

附录

        本节所有代码如下:

import numpy as np
from scipy.special import beta
import matplotlib.pyplot as plt
from scipy import statsif __name__ == '__main__':# 创建一个网格x, y = np.meshgrid(np.linspace(0.1, 1, 100), np.linspace(0.1, 1, 100))print('x=', '\n', x)print('y=', '\n', y)z = beta(x, y)print('z=', '\n', z)plt.rcParams['font.sans-serif'] = ['Simhei']  # 显示中文fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')ax.tick_params(axis="both", labelsize=12)ax.plot_surface(x, y, z, cmap='viridis')ax.set_xlabel('x', fontsize=13)ax.set_ylabel('y', fontsize=13)ax.set_zlabel('z')ax.set_title('贝塔函数图像')plt.show()X = np.linspace(0.1, 14, 500)plt.subplots(figsize=(8, 5))plt.plot(X, stats.chi2.pdf(X, df=1), label="1 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=2), label="2 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=4), label="4 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=6), label="6 d.o.f")plt.plot(X, stats.chi2.pdf(X, df=11), label="11 d.o.f")plt.title("卡方分布")plt.legend()plt.show()X = np.linspace(0.1, 4, 500)plt.plot(X, stats.f.pdf(X, 4,4), label="n1=4,n2=4")plt.plot(X, stats.f.pdf(X, 4,10), label="n1=4,n2=10")plt.plot(X, stats.f.pdf(X, 10,4), label="n1=10,n2=4")plt.plot(X, stats.f.pdf(X, 10,10), label="n1=10,n2=10")plt.title("F分布")plt.legend()plt.show()plt.rcParams["axes.unicode_minus"] = False  # 设置显示中文后,负号显示受影响,显示负号X = np.linspace(-5, 5, 1500)plt.plot(X, stats.t.pdf(X, 1), label="n=4")plt.plot(X, stats.t.pdf(X, 2), label="n=2")plt.plot(X, stats.t.pdf(X, 4), label="n=4")plt.plot(X, stats.t.pdf(X, 8), label="n=8")plt.title("t分布")plt.legend()plt.show()
参考文献

高数篇(一)-- Gamma 函数 VS Beta 函数

极坐标与直角坐标二重积分转换

F分布概率密度函数的推导

python绘制正态分布及三大抽样分布的概率密度图像

这篇关于一些常见分布-正态分布、对数正态分布、伽马分布、卡方分布、t分布、F分布等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/166301

相关文章

嵌入式软件常见的笔试题(c)

找工作的事情告一段落,现在把一些公司常见的笔试题型整理一下,本人主要是找嵌入式软件方面的工作,笔试的也主要是C语言、数据结构,大体上都比较基础,但是得早作准备,才会占得先机。   1:整型数求反 2:字符串求反,字符串加密,越界问题 3:字符串逆序,两端对调;字符串逆序,指针法 4:递归求n! 5:不用库函数,比较两个字符串的大小 6:求0-3000中含有9和2的全部数之和 7

vscode-创建vue3项目-修改暗黑主题-常见错误-element插件标签-用法涉及问题

文章目录 1.vscode创建运行编译vue3项目2.添加项目资源3.添加element-plus元素4.修改为暗黑主题4.1.在main.js主文件中引入暗黑样式4.2.添加自定义样式文件4.3.html页面html标签添加样式 5.常见错误5.1.未使用变量5.2.关闭typescript检查5.3.调试器支持5.4.允许未到达代码和未定义代码 6.element常用标签6.1.下拉列表

Linux - 探秘 Linux 的 /proc/sys/vm 常见核心配置

文章目录 PreLinux 的 /proc/sys/vm 简述什么是 /proc/sys/vm?主要的配置文件及其用途参数调整对系统的影响dirty_background_ratio 和 dirty_ratioswappinessovercommit_memory 和 overcommit_ratiomin_free_kbytes 实例与使用建议调整 swappiness设置 min_fr

C语言常见面试题3 之 基础知识

(1)i++和++i哪个效率更高? 对于内建数据类型,二者效率差别不大(去除编译器优化的影响) 对于自定义数据类型(主要是类),因为前缀式(++i)可以返回对象的引用;而后缀式(i++)必须返回对象的值,所以导致在大对象时产生了较大的复制开销,引起效率降低。 (2)不使用任何中间变量如何交换a b的值? void swap(int& a, int& b)//采用引用传参的方式{a^=

常见兼容性问题集合

* png24位的图片在iE6浏览器上出现背景,解决方案是做成PNG8.也可以引用一段脚本处理.* 浏览器默认的margin和padding不同。解决方案是加一个全局的*{margin:0;padding:0;}来统一。* IE6双边距bug:块属性标签float后,又有横行的margin情况下,在ie6显示margin比设置的大。 * 浮动ie产生的双倍距离(IE6双边距问题:在IE6下,如果对

Android中常见的内存泄露

内存泄漏是指无用对象(不再使用的对象)持续占有内存或无用对象的内存得不到及时释放,从而造成内存空间的浪费称为内存泄漏。内存泄露有时不严重且不易察觉,这样开发者就不知道存在内存泄露,但有时也会很严重,会提示你Out of memory。 Android中常见的内存泄露如下: 1.集合类泄漏 集合类如果仅仅有添加元素的方法,而没有相应的删除机制,导致内存被占用。如果这个集合类是全局性的变量 (比

【python】python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C++/Python语言 👉公众号👈:测试开发自动化【获取源码+商业合作】 👉荣__誉👈:阿里云博客专家博主、51CTO技术博主 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 python葡萄酒国家分布情况数据分析pyecharts可视化(源码+数据集+论文)【独一无二】 目录 python葡

【K8S运维】整理常见使用命令

*特别提醒: 文件复制类的命令,执行命令等需要谨慎确定命令执行后的效果,否则一旦出错就不可逆!!! 命令概览 序号使用场景命令格式使用样例命令使用说明1查询集群节点有多少kubectl get nodes2查询集群运行哪些podkubectl get pods -o wide -A3查询指定pod名称的pod信息kubeclt get pods -o wide -A|grep <具体pod对象

Java中常见的设计模式及应用场景

Java中常见的设计模式及应用场景 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨Java中常见的设计模式及其应用场景,帮助大家更好地理解和应用这些设计模式,提高代码的可维护性和可扩展性。 设计模式概述 设计模式是一种被反复使用的、经过分类的、代码设计中被广泛认可的优秀代码设计经验。它不仅能解决常见的问题,还能

matplotlib之常见图像种类

Matplotlib 是一个用于绘制图表和数据可视化的 Python 库。它支持多种不同类型的图形,以满足各种数据可视化需求。以下是一些 Matplotlib 支持的主要图形种类: 折线图(Line Plot): 用于显示数据随时间或其他连续变量的变化趋势。特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)plt.plot() 函数用于创建折线图。  示例: