Python大数据之PySpark(七)SparkCore案例

2023-10-08 08:01

本文主要是介绍Python大数据之PySpark(七)SparkCore案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • SparkCore案例
      • PySpark实现SouGou统计分析
    • 总结
    • 后记

SparkCore案例

PySpark实现SouGou统计分析

  • jieba分词:

  • pip install jieba 从哪里下载pypi

  • image-20210911172012214

  • 三种分词模式

  • 精确模式,试图将句子最精确地切开,适合文本分析;默认的方式

  • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

  • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

  • image-20210911171724531

# -*- coding: utf-8 -*-
# Program function:测试结巴分词
import jieba
import re# jieba.cut
# 方法接受四个输入参数:
# 需要分词的字符串;
# cut_all 参数用来控制是否采用全模式;
# HMM 参数用来控制是否使用 HMM 模型;
# use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码;
str = "我来到北京清华大学"
print(list(jieba.cut(str)))  # ['我', '来到', '北京', '清华大学'],默认的是精确模式
print(list(jieba.cut(str, cut_all=True)))  # ['我', '来到', '北京', '清华', '清华大学', '华大', '大学'] 完全模式# 准备的测试数据
str1 = "00:00:00	2982199073774412	[360安全卫士]	8 3	download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html"
print(re.split("\s+", str1)[2])  # [360安全卫士]
print(re.sub("\[|\]", "", re.split("\s+", str1)[2])) #360安全卫士
print(list(jieba.cut(re.sub("\[|\]", "", re.split("\s+", str1)[2]))))  # [360安全卫士] --->['360', '安全卫士']
  • image-20210911173303174
  • 数据认知:数据集来自于搜狗实验室,日志数据

  • 日志库设计为包括约1个月(2008年6月)Sogou搜索引擎部分网页查询需求用户点击情况的网页查询日志数据集合。

  • image-20210911171106364
  • image-20210911171201739
  • 需求

  • 1-首先需要将数据读取处理,形成结构化字段进行相关的分析

  • 2-如何对搜索词进行分词,使用jieba或hanlp

  • jieba是中文分词最好用的工具

  • image-20210911171442874
  • 步骤

  • 1-读取数据

  • 2-完成需求1:搜狗关键词统计

  • 3-完成需求2:用户搜索点击统计

  • 4-完成需求3:搜索时间段统计

  • 5-停止sparkcontext

  • 代码

# -*- coding: utf-8 -*-# Program function:搜狗分词之后的统计'''* 1-读取数据
* 2-完成需求1:搜狗关键词统计
* 3-完成需求2:用户搜索点击统计
* 4-完成需求3:搜索时间段统计
* 5-停止sparkcontext'''from pyspark import SparkConf, SparkContextimport reimport jiebaif __name__ == '__main__':# 准备环境变量conf = SparkConf().setAppName("sougou").setMaster("local[*]")
sc = SparkContext.getOrCreate(conf=conf)
sc.setLogLevel("WARN")# TODO*1 - 读取数据sougouFileRDD = sc.textFile("/export/data/pyspark_workspace/PySpark-SparkCore_3.1.2/data/sougou/SogouQ.reduced")# print("sougou count is:", sougouFileRDD.count())#sougou count is: 1724264# 00:00:00 2982199073774412   [360安全卫士]  8 3    download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.htmlresultRDD=sougouFileRDD \
.filter(lambda line:(len(line.strip())>0) and (len(re.split("\s+",line.strip()))==6))\
.map(lambda line:(re.split("\s+", line)[0],re.split("\s+", line)[1],re.sub("\[|\]", "", re.split("\s+", line)[2]),re.split("\s+", line)[3],re.split("\s+", line)[4],re.split("\s+", line)[5]
))# print(resultRDD.take(2))#('00:00:00', '2982199073774412', '360安全卫士', '8', '3', 'download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html')
#('00:00:00', '07594220010824798', '哄抢救灾物资', '1', '1', 'news.21cn.com/social/daqian/2008/05/29/4777194_1.shtml')# TODO*2 - 完成需求1:搜狗关键词统计print("=============完成需求1:搜狗关键词统计==================")
recordRDD = resultRDD.flatMap(lambda record: jieba.cut(record[2]))# print(recordRDD.take(5))sougouResult1=recordRDD\.map(lambda word:(word,1))\.reduceByKey(lambda x,y:x+y)\.sortBy(lambda x:x[1],False)# print(sougouResult1.take(5))# TODO*3 - 完成需求2:用户搜索点击统计print("=============完成需求2:用户搜索点击统计==================")# 根据用户id和搜索的内容作为分组字段进行统计sougouClick = resultRDD.map(lambda record: (record[1], record[2]))
sougouResult2=sougouClick\.map(lambda tuple:(tuple,1))\.reduceByKey(lambda x,y:x+y) #key,value# 打印一下最大的次数和最小的次数和平均次数print("max count is:",sougouResult2.map(lambda x: x[1]).max())
print("min count is:",sougouResult2.map(lambda x: x[1]).min())
print("mean count is:",sougouResult2.map(lambda x: x[1]).mean())# 如果对所有的结果排序# print(sougouResult2.sortBy(lambda x: x[1], False).take(5))# TODO*4 - 完成需求3:搜索时间段统计print("=============完成需求3:搜索时间段-小时-统计==================")
#00:00:00
hourRDD = resultRDD.map(lambda x: str(x[0])[0:2])
sougouResult3=hourRDD\.map(lambda word:(word,1))\.reduceByKey(lambda x,y:x+y)\.sortBy(lambda x:x[1],False)
print("搜索时间段-小时-统计",sougouResult3.take(5))# TODO*5 - 停止sparkcontextsc.stop()

总结

  • 重点关注在如何对数据进行清洗,如何按照需求进行统计
  • 1-rdd的创建的两种方法,必须练习
  • 2-rdd的练习将基础的案例先掌握。map。flatMap。reduceByKey
  • 3-sougou的案例需要联系2-3遍
  • 练习流程:
  • 首先先要将代码跑起来
  • 然后在理解代码,这一段代码做什么用的
  • 在敲代码,需要写注释之后敲代码

后记

📢博客主页:https://manor.blog.csdn.net

📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 Maynor 原创,首发于 CSDN博客🙉
📢感觉这辈子,最深情绵长的注视,都给了手机⭐
📢专栏持续更新,欢迎订阅:https://blog.csdn.net/xianyu120/category_12453356.html

这篇关于Python大数据之PySpark(七)SparkCore案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163875

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调