Kaggle 泰坦尼克

2023-10-08 05:20
文章标签 kaggle 泰坦尼克

本文主要是介绍Kaggle 泰坦尼克,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

入门kaggle,开始机器学习应用之旅。

参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点。下面记录一些有趣的数据分析方法和一个自己撸的小程序。

 

1.Tricks

1) df.info():数据的特征属性,包括数据缺失情况和数据类型。

    df.describe(): 数据中各个特征的数目,缺失值为NaN,以及数值型数据的一些分布情况,而类目型数据看不到。

    缺失数据处理:缺失的样本占总数比例极高,则直接舍弃;缺失样本适中,若为非连续性特征则将NaN作为一个新类别加到类别特征中(0/1化),若为连续性特征可以将其离散化后把NaN作为新类别加入,或用平均值填充。

2)数据分析方法:将特征分为连续性数据:年龄、票价、亲人数目;类目数据:生存与否、性别、等级、港口;文本类数据:姓名、票名、客舱名

3)数据分析技巧(画图、求相关性)

  • 画图

类目特征分布图&&特征与生存情况关联柱状图:

fig1 = plt.figure(figsize=(12,10))  # 设定大尺寸后使得图像标注不重叠
fig1.set(alpha=0.2)  # 设定图表颜色alpha参数

plt.subplot2grid((2,3),(0,0))             # 在一张大图里分列几个小图
data_train.Survived.value_counts().plot(kind='bar')# 柱状图
plt.title(u"获救情况 (1为获救)") # 标题
plt.ylabel(u"人数")plt.subplot2grid((2,3),(0,1))
data_train.Pclass.value_counts().plot(kind="bar")
plt.ylabel(u"人数")
plt.title(u"乘客等级分布")plt.subplot2grid((2,3),(0,2))
plt.scatter(data_train.Survived, data_train.Age)
plt.ylabel(u"年龄")                         # 设定纵坐标名称
plt.grid(b=True, which='major', axis='y')
plt.title(u"按年龄看获救分布 (1为获救)")plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde')
data_train.Age[data_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel(u"年龄")# plots an axis lable
plt.ylabel(u"密度")
plt.title(u"各等级的乘客年龄分布")
plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best') # sets our legend for our graph.
View Code

                   

以上为3种在一张画布实现多张图的画法:

ax1 = plt.subplot2grid((3,3), (0,0), colspan=3)  
ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)  
ax3 = plt.subplot2grid((3,3), (1, 2), rowspan=2)  
ax4 = plt.subplot2grid((3,3), (2, 0))  
ax5 = plt.subplot2grid((3,3), (2, 1))  
plt.suptitle("subplot2grid")  
View Code

                      

此外,还有两种方法等效:

f=plt.figure()
ax=fig.add_subplot(111)
ax.plot(x,y)plt.figure()
plt.subplot(111)
plt.plot(x,y)
View Code

连续性特征分布可以用直方图hist来实现(见上图-年龄分布直方图):

figure1 = plt.figure(figsize=(6,6))
value_age = train_data['Age']
value_age.hist(color='b', alpha=0.5)  # 年龄分布直方图
plt.xlabel(u'年龄')
plt.ylabel(u'人数')
plt.title(u'年龄分布直方图')
View Code

类目特征与生存关系柱状图(见上图-各乘客等级的获救情况):

fig2 = plt.figure(figsize=(6,5))
fig2.set(alpha=0.2)
Survived_0 = data_train.Pclass[data_train.Survived==0].value_counts()
Survived_1 = data_train.Pclass[data_train.Survived==1].value_counts()
df = pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)  # stacked=False时不重叠
plt.title(u"各乘客等级的获救情况")
plt.xlabel(u"乘客等级")
plt.ylabel(u"人数")
plt.show()
View Code

各属性与生存率进行关联:

eg:舱位和性别 与存活率的关系:利用pandas中的groupby函数

Pclass_Gender_grouped=dt_train_p.groupby(['Sex','Pclass'])  #按照性别和舱位分组聚合  
PG_Survival_Rate=(Pclass_Gender_grouped.sum()/Pclass_Gender_grouped.count())['Survived']  #计算存活率  
  
x=np.array([1,2,3])  
width=0.3  
plt.bar(x-width,PG_Survival_Rate.female,width,color='r')  
plt.bar(x,PG_Survival_Rate.male,width,color='b')  
plt.title('Survival Rate by Gender and Pclass')  
plt.xlabel('Pclass')  
plt.ylabel('Survival Rate')  
plt.xticks([1,2,3])  
plt.yticks(np.arange(0.0, 1.1, 0.1))  
plt.grid(True,linestyle='-',color='0.7')  
plt.legend(['Female','Male'])  
plt.show()  #画图  
View Code

可以看到,不管是几等舱位,都是女士的存活率远高于男士。

 将连续性数据年龄分段后,画不同年龄段的分布以及存活率:

age_train_p=dt_train_p[~np.isnan(dt_train_p['Age'])]  #去除年龄数据中的NaN  
ages=np.arange(0,85,5)  #0~85岁,每5岁一段(年龄最大80岁)  
age_cut=pd.cut(age_train_p.Age,ages)  
age_cut_grouped=age_train_p.groupby(age_cut)  
age_Survival_Rate=(age_cut_grouped.sum()/age_cut_grouped.count())['Survived']  #计算每年龄段的存活率  
age_count=age_cut_grouped.count()['Survived']  #计算每年龄段的总人数 

ax1=age_count.plot(kind='bar')  
ax2=ax1.twinx()  #使两者共用X轴  
ax2.plot(age_Survival_Rate.values,color='r')  
ax1.set_xlabel('Age')  
ax1.set_ylabel('Number')  
ax2.set_ylabel('Survival Rate')  
plt.title('Survival Rate by Age')  
plt.grid(True,linestyle='-',color='0.7')  
plt.show()   
View Code

可以看到年龄主要在15~50岁左右,65~80岁死亡率较高,后面80岁存活率高是因为只有1人。

 

  • 相关性分析:

Parch、SibSp取值少,分布不均匀,不适合作为连续值来处理。可以将其分段化。这里分析一下Parch和SibSp与生存的关联性

from sklearn.feature_selection import chi2
print("Parch:", chi2(train_data.filter(["Parch"]), train_data['Survived']))
print("SibSp:", chi2(train_data.filter(["SibSp"]), train_data['Survived']))
# chi2(X,y)  X.shape(n_samples, n_features_in)   y.shape(n_samples,)
# 返回 chi2 和 pval,  chi2值描述了自变量与因变量之间的相关程度:chi2值越大,相关程度也越大,
# http://guoze.me/2015/09/07/chi-square/
# 可以看到Parch比SibSp的卡方校验取值大,p-value小,相关性更强。

 

4)数据预处理:

PassengerId 舍掉

Pclass为类目属性,3类。本身有序的,暂时不进行dummy coding

Name 为文本属性,舍掉,暂时不考虑

Sex为类目属性,2类。本身无序,进行dummy coding

Age为连续属性,确实较多可以用均值填充。幅度变化大。可以将其以5岁为step进行离散化或利用scaling将其归一化到[-1,1]之间

SibSp为连续属性,但比较离散,不适合按照连续值处理,暂时不用处理。或者可以按照其数量>3和<=3进行dummy coding

Parch为连续属性。但比较离散,不适合按照连续值处理,暂时不用处理。

Ticket为文本属性,舍掉,暂时不考虑

Fare为连续属性,幅度变化大,可以利用scaling将其归一化到[-1,1]之间

Cabin为类目属性,但缺失严重,可以按照是否缺失来0/1二值化,进行dummy coding

Embarked为类目属性,缺失值极少,先填充后进行dummy coding

 综上,可用的数据特征有:Pclass,Sex,Age,SibSp,Parch,Fare,Cabin,Embarked

 此外需注意的是,需对训练集和测试集的数据做同样的处理。

 

 

2.实例

根据以上思路,一个小baseline诞生了:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas import Series, DataFrame
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from learning_curve import *
from pylab import mpl
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
mpl.rcParams['font.sans-serif'] = ['SimHei']  #使得plt操作可以显示中文
from sklearn.feature_extraction import DictVectorizerdata_train = pd.read_csv('train.csv')
data_test = pd.read_csv('test.csv')feature = ['Pclass','Age','Sex','Fare','Cabin','Embarked','SibSp','Parch']  # 考虑的特征X_train = data_train[feature]
y_train = data_train['Survived']X_test = data_test[feature]X_train.loc[data_train['SibSp']<3, 'SibSp'] = 1   #按照人数3来划分
X_train.loc[data_train['SibSp']>=3, 'SibSp'] = 0
X_train['Age'].fillna(X_train['Age'].mean(), inplace=True)
X_test.loc[data_test['SibSp']<3, 'SibSp']=1
X_test.loc[data_test['SibSp']>=3, 'SibSp'] = 0
X_test['Age'].fillna(X_test['Age'].mean(), inplace=True)  # 缺失的年龄补以均值
X_test['Fare'].fillna(X_test['Fare'].mean(), inplace=True)
# X_train.loc[X_train['Age'].isnull(), 'Age'] = X_train['Age'].mean()

dummies_SibSp = pd.get_dummies(X_train['SibSp'], prefix='SibSp')  #进行dummy coding
dummies_Sex = pd.get_dummies(X_train['Sex'], prefix= 'Sex')
dummies_Pclass = pd.get_dummies(X_train['Pclass'], prefix='Pclass')
dummies_Emabrked = pd.get_dummies(X_train['Embarked'], prefix='Embarked')ss=StandardScaler()X_train.loc[X_train['Cabin'].isnull(), 'Cabin'] = 1
X_train.loc[X_train['Cabin'].notnull(), 'Cabin'] = 0
X_train['Age_new'] = (X_train['Age']/5).astype(int)
X_train['Fare_new'] = ss.fit_transform(X_train.filter(['Fare']))
X_train = pd.concat([X_train, dummies_Sex, dummies_Pclass, dummies_Emabrked, dummies_SibSp], axis=1)
X_train.drop(['Age', 'Sex', 'Pclass', 'Fare','Embarked', 'SibSp'], axis=1, inplace=True)dummies_SibSp = pd.get_dummies(X_test['SibSp'], prefix='SibSp')
dummies_Sex = pd.get_dummies(X_test['Sex'], prefix= 'Sex')
dummies_Pclass = pd.get_dummies(X_test['Pclass'], prefix='Pclass')
dummies_Emabrked = pd.get_dummies(X_test['Embarked'], prefix='Embarked')X_test['Age_new'] = (X_test['Age']/5).astype('int')
X_test['Fare_new'] = ss.fit_transform(X_test.filter(['Fare']))
X_test = pd.concat([X_test, dummies_Sex, dummies_Pclass, dummies_Emabrked, dummies_SibSp], axis=1)
X_test.drop(['Age', 'Sex', 'Pclass', 'Fare','Embarked','SibSp'], axis=1, inplace=True)
X_test.loc[X_test['Cabin'].isnull(), 'Cabin'] = 1
X_test.loc[X_test['Cabin'].notnull(), 'Cabin'] = 0dec = LogisticRegression()  # logistic回归
dec.fit(X_train, y_train)
y_pre = dec.predict(X_test)# 交叉验证
all_data = X_train.filter(regex='Cabin|Age_.*|Fare_.*|Sex.*|Pclass_.*|Embarked_.*|SibSp_.*_Parch')
X_cro = all_data.as_matrix()
y_cro = y_train.as_matrix()
est = LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
print(cross_val_score(dec, X_cro, y_cro, cv=5))# 保存结果
# result = pd.DataFrame({'PassengerId':data_test['PassengerId'].as_matrix(), 'Survived':y_pre.astype(np.int32)})
# result.to_csv("my_logisticregression_1.csv", index=False)# 学习曲线
plot_learning_curve(dec, u"学习曲线", X_train, y_train)# 查看各个特征的相关性
columns = list(X_train.columns)
plt.figure(figsize=(8,8))
plot_df = pd.DataFrame(dec.coef_.ravel(), index=columns)
plot_df.plot(kind='bar')
plt.show()# 分析SibSp
# survived_0 = data_train.SibSp[data_train['Survived']==0].value_counts()
# survived_1 = data_train.SibSp[data_train['Survived']==1].value_counts()
# df = pd.DataFrame({'获救':survived_1, '未获救':survived_0})
# df.plot(kind='bar', stacked=True)
# plt.xlabel('兄妹个数')
# plt.ylabel('获救情况')
# plt.title('兄妹个数与获救情况')

# 不加SibSp [ 0.70 0.80446927 0.78651685 0.76966292 0.79661017] # 加上SibSp [ 0.70 0.78212291 0.80337079 0.79775281 0.81355932]# logistic:[ 0.78212291 0.80446927 0.78651685 0.76966292 0.80225989] why?

 

3.结果分析与总结

1)学习曲线函数:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve# 用sklearn的learning_curve得到training_score和cv_score,使用matplotlib画出learning curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1,train_sizes=np.linspace(.05, 1., 20), verbose=0, plot=True):"""画出data在某模型上的learning curve.参数解释----------estimator : 你用的分类器。title : 表格的标题。X : 输入的feature,numpy类型y : 输入的target vectorylim : tuple格式的(ymin, ymax), 设定图像中纵坐标的最低点和最高点cv : 做cross-validation的时候,数据分成的份数,其中一份作为cv集,其余n-1份作为training(默认为3份)n_jobs : 并行的的任务数(默认1)"""train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, verbose=verbose)train_scores_mean = np.mean(train_scores, axis=1)train_scores_std = np.std(train_scores, axis=1)test_scores_mean = np.mean(test_scores, axis=1)test_scores_std = np.std(test_scores, axis=1)if plot:plt.figure(1)plt.title(title)if ylim is not None:plt.ylim(*ylim)plt.xlabel(u"训练样本数")plt.ylabel(u"得分")plt.gca().invert_yaxis()plt.grid()plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std,alpha=0.1, color="b")plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std,alpha=0.1, color="r")plt.plot(train_sizes, train_scores_mean, 'o-', color="b", label=u"训练集上得分")plt.plot(train_sizes, test_scores_mean, 'o-', color="r", label=u"交叉验证集上得分")plt.legend(loc="best")plt.draw()plt.show()plt.gca().invert_yaxis()midpoint = ((train_scores_mean[-1] + train_scores_std[-1]) + (test_scores_mean[-1] - test_scores_std[-1])) / 2diff = (train_scores_mean[-1] + train_scores_std[-1]) - (test_scores_mean[-1] - test_scores_std[-1])return midpoint, diff
learning_curve.py

见下图:将learning_curve画出可以看到两者在0.8左右趋于平行,但是正确率不够高,应该是属于欠拟合。所以可以考虑加入新的特征,再对特征进行更深的挖掘 。

       

 

2)特征相关性分析图

columns = list(X_train.columns)
plt.figure(figsize=(8,8))
plot_df = pd.DataFrame(dec.coef_.ravel(), index=columns)
plot_df.plot(kind='bar')
plt.show()
View Code

结果见下图:通过logistic学到的参数权重

 性别、等级和亲属相关性较强,而亲属在前面已经了解到相关性并不强,所以可以对这一特征加以优化,例如将Parch+SibSp作为一个新特征。

 其他特征或正相关或负相关,但都不太明显。

 cabin怎么没有相关性呢?

 

3)交叉验证

# 交叉验证
all_data = X_train.filter(regex='Cabin|Age_.*|Fare_.*|Sex.*|Pclass_.*|Embarked_.*|SibSp_.*_Parch')
X_cro = all_data.as_matrix()
y_cro = y_train.as_matrix()
est = LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
print(cross_val_score(dec, X_cro, y_cro, cv=5))
View Code

每次通过训练集学习到参数后进行分类,但是怎么评价结果的好坏呢,可以利用交叉验证来实现,根据交叉验证的结果大致可以知道运用于测试集的结果。

 这是本次测试的交叉验证结果:  [ 0.78212291 0.80446927 0.78651685 0.76966292 0.80225989]

实际提交到Kaggle上时候准确率为0.7751

 

 

 

参考

机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾

机器学习笔记(1)-分析框架-以Kaggle Titanic问题为例

机器学习一小步:Kaggle上的练习Titanic: Machine Learning from Disaster(一)

转载于:https://www.cnblogs.com/king-lps/p/7576452.html

这篇关于Kaggle 泰坦尼克的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162984

相关文章

kaggle竞赛宝典 | Mamba模型综述!

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。 原文链接:Mamba模型综述! 型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Transformers仍面临固有的局限性,尤其是在推理时,由于注意力计算的平方复杂度,导致推理过程耗时较长。 最近,一种名为Mamba的新型架构应运而生,其灵感源自经典的状态空间模型,成为构建基础模型的有力替代方案

Kaggle刷比赛的利器,LR,LGBM,XGBoost,Keras

刷比赛利器,感谢分享的人。 摘要 最近打各种比赛,在这里分享一些General Model,稍微改改就能用的 环境: python 3.5.2 XGBoost调参大全: http://blog.csdn.net/han_xiaoyang/article/details/52665396 XGBoost 官方API: http://xgboost.readthedocs.io/en

24/9/3算法笔记 kaggle泰坦尼克

题目: 这次我用两种算法做了这道题 逻辑回归二分类算法 import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LogisticRegr

Kaggle竞赛——手写数字识别(Digit Recognizer)

目录 1. 数据集介绍2. 数据分析3. 数据处理与封装3.1 数据集划分3.2 将数据转为tensor张量3.3 数据封装 4. 模型训练4.1 定义功能函数4.1 resnet18模型4.3 CNN模型4.4 FCNN模型 5. 结果分析5.1 混淆矩阵5.2 查看错误分类的样本 6. 加载最佳模型7. 参考文献 本次手写数字识别使用了resnet18(比resnet50精度更

Kaggle克隆github项目+文件操作+Kaggle常见操作问题解决方案——一文搞定,以openpose姿态估计项目为例

文章目录 前言一、Kaggle克隆仓库1、克隆项目2、查看目录 二、安装依赖三、文件的上传、复制、转移操作1.上传.pth文件到input目录2、将权重文件从input目录转移到工作目录 三、修改工作目录里的文件内容1、修改demo_camera.py内容 四、运行! 前言 想跑一些深度学习的项目,但是电脑没有显卡,遂看向云服务器Kaggle,这里可以每周免费使用30h的GP

机器学习学习--Kaggle Titanic--LR,GBDT,bagging

参考,机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾  http://www.cnblogs.com/zhizhan/p/5238908.html 机器学习(二) 如何做到Kaggle排名前2%  http://www.jasongj.com/ml/classification/ 一、认识数据 1.把csv文件读入成dataframe格式 import pandas as

kaggle平台free使用GPU

1、注册 请保证在【科学上网】条件下进入如下操作,只有在注册账户和手机号验证时需要。 step1:注册账户 进入kaggle官网:https://www.kaggle.com/,点击右上角【Register】进入注册页面 最好选择使用邮箱注册(!!!如果你先用goole注册,然后改成其他邮箱,再用其他邮箱登录时会报错,需要重新找回密码) 输入【邮箱】、【密码】和【用户名】后,勾选

Kaggle竞赛:Rossmann Store Sales第66名策略复现

之前做过一次Kaggle的时间序列竞赛数据集练习:CSDN链接效果并不理想,之后在Kaggle的评论中又找到了各式各样的模型方法,其中我还手动还原过第三名的Entity Embedding:CSDN链接。这个参赛方法中,使用了除了比赛给出的数据以外的外部数据(天气数据等)。而这次,我准备还原一个没有使用外部数据且方法较为简单,但是效果较好的策略。也就是第66名的策略。 详细的策略可以看这里 R语言

kaggle竞赛宝典 | 量化竞赛第一名的网络模型

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。 原文链接:量化竞赛第一名的网络模型 1 简介 今天我们重温Jane Street 大赛第一名的网络模型。该次赛事数据集包含了一组匿名的特征,feature_{0...129},代表真实的股市数据。数据集中的每一行代表一个交易机会,你需要预测一个动作值:1表示进行交易,0表示放弃。每笔交易都有一个相关的权重和响应,它们

【Kaggle】练习赛《有毒蘑菇的二分类预测》(下)

前言 上篇 《有毒蘑菇的二分类预测 》(上) 用ColumnTransformer和Pipeline 技术来提升缺失值和建模的方法,本篇将用特征工程的方法,将特征扩展,由原先的21个特征扩展成118个特征,再用深度学习的方法进行建模以达到较好的成绩,同时,在这篇里增加了上篇没有EDA部分,更好的展示数据集。 题目说明 加载库 import pandas as pdimport num