kaggle竞赛宝典 | 量化竞赛第一名的网络模型

2024-08-25 21:12

本文主要是介绍kaggle竞赛宝典 | 量化竞赛第一名的网络模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。

原文链接:量化竞赛第一名的网络模型

1 简介

今天我们重温Jane Street 大赛第一名的网络模型。该次赛事数据集包含了一组匿名的特征,feature_{0...129},代表真实的股市数据。数据集中的每一行代表一个交易机会,你需要预测一个动作值:1表示进行交易,0表示放弃。每笔交易都有一个相关的权重和响应,它们一起代表交易的回报。日期列是一个整数,表示交易的日期,而ts_id表示时间顺序。

该赛事的第一名选手采用的是AutoEncoder+MLP的网络模型。一起回顾学习一下。

2 模型

2.1 模型结构

模型主要由三个模块组成:

  1. 加入高斯噪音的Autoencoder模块;

  2. Decoder之后数据的原始Loss;

  3. 原始数据+Encoder数据的原始问题的Loss;

2.2 相关细节

  1. 使用自编码器创建新特征,并与原始特征连接,作为下游MLP模型的输入

  2. 在每个交叉验证分割中一起训练自编码器和MLP,以防止数据泄漏

  3. 向自编码器添加目标信息(监督学习),迫使其生成更相关的特征,并为梯度的反向传播创建捷径

  4. 在编码器前添加高斯噪声层,以进行数据增强并防止过拟合

  5. 使用Swish激活函数代替ReLU,以防止“死亡神经元”并平滑梯度

  6. MLP使用批归一化和Dropout

  7. 使用3个不同的随机种子训练模型,并取平均值以减少预测方差

  8. 仅使用在最后两个交叉验证分割中训练的模型(具有不同种子),因为它们已经看到更多的数据

  9. 仅监控MLP的二元交叉熵损失,而不是整体损失,以便早停

  10. 使用Hyperopt找到最佳超参数集

3 核心代码

def create_ae_mlp(num_columns, num_labels, hidden_units, dropout_rates, ls = 1e-2, lr = 1e-3):inp = tf.keras.layers.Input(shape = (num_columns, ))x0 = tf.keras.layers.BatchNormalization()(inp)encoder = tf.keras.layers.GaussianNoise(dropout_rates[0])(x0)encoder = tf.keras.layers.Dense(hidden_units[0])(encoder)encoder = tf.keras.layers.BatchNormalization()(encoder)encoder = tf.keras.layers.Activation('swish')(encoder)decoder = tf.keras.layers.Dropout(dropout_rates[1])(encoder)decoder = tf.keras.layers.Dense(num_columns, name = 'decoder')(decoder)x_ae = tf.keras.layers.Dense(hidden_units[1])(decoder)x_ae = tf.keras.layers.BatchNormalization()(x_ae)x_ae = tf.keras.layers.Activation('swish')(x_ae)x_ae = tf.keras.layers.Dropout(dropout_rates[2])(x_ae)out_ae = tf.keras.layers.Dense(num_labels, activation = 'sigmoid', name = 'ae_action')(x_ae)x = tf.keras.layers.Concatenate()([x0, encoder])x = tf.keras.layers.BatchNormalization()(x)x = tf.keras.layers.Dropout(dropout_rates[3])(x)for i in range(2, len(hidden_units)):x = tf.keras.layers.Dense(hidden_units[i])(x)x = tf.keras.layers.BatchNormalization()(x)x = tf.keras.layers.Activation('swish')(x)x = tf.keras.layers.Dropout(dropout_rates[i + 2])(x)out = tf.keras.layers.Dense(num_labels, activation = 'sigmoid', name = 'action')(x)model = tf.keras.models.Model(inputs = inp, outputs = [decoder, out_ae, out])model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = lr),loss = {'decoder': tf.keras.losses.MeanSquaredError(), 'ae_action': tf.keras.losses.BinaryCrossentropy(label_smoothing = ls),'action': tf.keras.losses.BinaryCrossentropy(label_smoothing = ls), },metrics = {'decoder': tf.keras.metrics.MeanAbsoluteError(name = 'MAE'), 'ae_action': tf.keras.metrics.AUC(name = 'AUC'), 'action': tf.keras.metrics.AUC(name = 'AUC'), }, )return model

4 参考文献

  1. https://www.kaggle.com/competitions/jane-street-market-prediction/discussion/224348

  2. https://www.kaggle.com/code/gogo827jz/jane-street-supervised-autoencoder-mlp

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于kaggle竞赛宝典 | 量化竞赛第一名的网络模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106669

相关文章

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义