代码 | 自适应大邻域搜索系列之(3) - Destroy和Repair方法代码实现解析

2023-10-08 00:32

本文主要是介绍代码 | 自适应大邻域搜索系列之(3) - Destroy和Repair方法代码实现解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码 | 自适应大邻域搜索系列之(3) - Destroy和Repair方法代码实现解析

前言

上一篇文章中我们具体解剖了ALNS类的具体代码实现过程,不过也留下了很多大坑。接下来的文章基本都是“填坑”了,把各个模块一一展现解析给大家。不过碍于文章篇幅等原因呢,也不会每一行代码都进行讲解,那些简单的代码就跳过了,相信大家也能一眼就看懂。好了,废话不多说,开始干活吧。

01 照旧总体概述

前面我们提到,ALNS中的重中之重就是Destroy和Repair方法了,在整一个ALNS框架中呢,涉及这俩货的有Destroy和Repair方法的具体实现、Destroy和Repair方法管理(包括各个Destroy和Repair方法权重分配、成绩打分、按权重选择哪个Destroy和Repair方法等操作)。所以在这次的ALNS代码中呢,这俩货的代码实现呢也分为两个模块:

  • Destroy和Repair方法具体实现模块
  • Destroy和Repair方法管理模块

下面我们将对其进行一一讲解,不知道大家小板凳准备好了没有。

02 Destroy和Repair方法具体实现

关于Destroy和Repair方法,由三个类组成,分别是AOperator、ADestroyOperator、ARepairOperator。它们之间的继承派生关系如下:
1240

下面对其一一讲解。

2.1 AOperator

这是一个基础父类,它抽象了Destroy和Repair方法共有的一些方法和特征(成绩、权重、名称等等),然后Destroy和Repair方法再各自继承于它,实现自己的功能模块。成员变量已经注释清楚了,关于protected的一个成员noise噪声模式会在后面讲到。其他的方法也很简单就不做多解释了。

class AOperator
{
private://! Total number of calls during the process.size_t totalNumberOfCalls;//! Number of calls since the last evaluation.size_t nbCallsSinceLastEval;//! score of the operator.double score;//! weight of the operator.double weight;//! designation of the operator.std::string operatorName;protected://! Indicate if the operator is used in noise mode or not.bool noise;
public://! Constructor.AOperator(std::string name){operatorName = name;init();}//! Destructor.virtual ~AOperator(){};//! Initialize the values of the numbers of calls.void init(){totalNumberOfCalls = 0;nbCallsSinceLastEval = 0;score = 0;weight = 1;}//! reset the number of calls since last eval.void resetNumberOfCalls(){nbCallsSinceLastEval = 0;}//! Simple getter.//! \return the total number of calls to the operator since//! the beginning of the optimization process.size_t getTotalNumberOfCalls(){return totalNumberOfCalls;};//! Simple getter.//! \return the number of calls to this operator since the last//! evaluation.size_t getNumberOfCallsSinceLastEvaluation(){return nbCallsSinceLastEval;};void increaseNumberOfCalls(){totalNumberOfCalls++;nbCallsSinceLastEval++;}//! Simple getter.double getScore() const{return score;}//! Simple getter.double getWeight() const{return weight;}//! resetter.void resetScore(){this->score = 0;}//! Simple setter.void setScore(double s){this->score = s;}//! Simple setter.void setWeight(double weight){this->weight = weight;}//! Simple getter.std::string getName(){return operatorName;};//! Set noise to true.void setNoise(){noise=true;};//! Set noise to false.void unsetNoise(){noise=false;};};

2.2 ADestroyOperator

该类主要是继承于上面的AOperator类,然后再此基础上加上Destroy操作的具体实现。它是一个抽象类,需要在后续的应用中重写Destroy操作的方法。

class ADestroyOperator : public AOperator {
protected://! The minimum destroy size used.size_t minimunDestroy;//! The maximum destroy size used.size_t maximumDestroy;public://! Constructor.//! \param mini the minimum destroy size.//! \param maxi the maximum destroy size.//! \param s the name of the destroy operator.ADestroyOperator(size_t mini, size_t maxi, std::string s) : AOperator(s){minimunDestroy = mini;maximumDestroy = maxi;}//! Destructor.virtual ~ADestroyOperator(){};//! This function is the one called to destroy a solution.//! \param sol the solution to be destroyed.virtual void destroySolution(ISolution& sol)=0;
};

2.3 ARepairOperator

同理,也是由AOperator类派生出来并加上Repair自己的实现方法的类。也是一个抽象类,需要在后续的使用中重写Repair方法。

class ARepairOperator : public AOperator {public:ARepairOperator(std::string s) : AOperator(s){}virtual ~ARepairOperator(){};virtual void repairSolution(ISolution& sol)=0;
};

03 Destroy和Repair方法管理

对Destroy和Repair方法进行管理的由两个类来实现:AOperatorManager、OperatorManager。其中AOperatorManager是抽象类,只提供接口,OperatorManager继承于AOperatorManager。并对其接口进行实现。

3.1 AOperatorManager

该类抽象了OperatorManager的一些特征,只提供接口。因此成员函数都是纯虚函数。相关方法的说明已经注释在代码里面了。关于保护成员:stats用于保存算法迭代过程中的一些状态量,这个类后续也会讲解的。

class AOperatorManager
{
public://! This method selects a destroy operator.//! \return a destroy operator.virtual ADestroyOperator& selectDestroyOperator()=0;//! This method selects a repair operator.//! \return a repair operator.virtual ARepairOperator& selectRepairOperator()=0;virtual void recomputeWeights()=0;//! Update the scores of the operators.virtual void updateScores(ADestroyOperator& des, ARepairOperator& rep, ALNS_Iteration_Status& status)=0;//! Indicate that the optimization process starts.virtual void startSignal()=0;//! Destroy the operators registered to this operator manager.virtual void end()=0;//! Simple setter.void setStatistics(Statistics* statistics){stats = statistics;};
protected://! A pointer to the instance of the statistics module.Statistics* stats;
};

3.2 OperatorManager

该类在AOperatorManager基础上也添加了一些自己额外的成员变量和函数方法。具体还是看代码理解吧,挺简单的,没有需要多解释的,我在这多少无益。

class OperatorManager: public AOperatorManager {
private://! The set of repair operators.std::vector<AOperator*> repairOperators;//! The set of destroy operators.std::vector<AOperator*> destroyOperators;//! The sum of the weights of the repair operators.double sumWeightsRepair;//! The sum of the weights of the destroy operators.double sumWeightsDestroy;//! The paramaters to be used by the ALNS.ALNS_Parameters* parameters;//! Indicate whether or not the next operators to be return//! should be noised or not.bool noise;//! A counter that indicates the number of times repair operators with noise have been successfulldouble performanceRepairOperatorsWithNoise;//! A counter that indicates the number of times repair operators without noise have been successfulldouble performanceRepairOperatorsWithoutNoise;//! Use a roulette wheel to select an operator in a vector of operators.//! \return the selected operator.AOperator& selectOperator(std::vector<AOperator*>& vecOp, double sumW);//! Recompute the weight of an operator.void recomputeWeight(AOperator& op, double& sumW);
public://! Constructor//! \param param the parameters to be used.OperatorManager(ALNS_Parameters& param);//! Destructor.virtual ~OperatorManager();//! This function recompute the weights of every operator managed by this//! manager.void recomputeWeights();//! This method selects a destroy operator.//! \return a destroy operator.ADestroyOperator& selectDestroyOperator();//! This method selects a repair operator.//! \return a repair operator.ARepairOperator& selectRepairOperator();//! This method adds a repair operator to the list//! of repair operator managed by this manager.//! \param repairOperator the repair operator to be added.void addRepairOperator(ARepairOperator& repairOperator);//! This method adds a destroy operator to the list//! of destroy operator managed by this manager.//! \param destroyOperator the destroy operator to be added.void addDestroyOperator(ADestroyOperator& destroyOperator);//! This method run some sanity checks to ensure that it is possible//! to "safely" use this manager within the ALNS.void sanityChecks();//! Update the scores of the operators.virtual void updateScores(ADestroyOperator& des, ARepairOperator& rep, ALNS_Iteration_Status& status);//! Indicate that the optimization process starts.virtual void startSignal();//! Destroy all the operators registered to this operator.void end();
};

上面是该类的.h文件,关于其中某些函数方法的实现,小编下面挑一些来重点给大家讲讲,那些以小编的脑瓜子都能理解的代码就省略了,大家应该都能懂……

3.3 OperatorManager具体实现

又到了一大波代码时间,来吧来吧,小板凳准备好,要开始啦~

3.3.1 OperatorManager::recomputeWeight(...)

重新计算单个操作的权重。其有两个参数AOperator& op, double& sumW,其中 op是要重新计算权重的repair或者destroy方法,sumW是其对应集合的权重总和。
这里只讲一个新权重的计算方式就行:
1240
其中:
Rho为设定的[0, 1]之间的参数,PrevWeight表示旧的权重,nbCalls表示在上一次自上一次更新完权重到现在该方法被调用的次数,timeSegmentsIt表示迭代多少次需要重新计算一下权重的迭代次数,currentScore表示旧的成绩。理解了这些就很easy了。

void OperatorManager::recomputeWeight(AOperator& op, double& sumW)
{double prevWeight = op.getWeight();sumW -= prevWeight;double currentScore = op.getScore();size_t nbCalls = op.getNumberOfCallsSinceLastEvaluation();double newWeight = (1-parameters->getRho())*prevWeight + parameters->getRho()*(static_cast<double>(nbCalls)/static_cast<double>(parameters->getTimeSegmentsIt()))*currentScore;// We ensure that the weight is within the bounds.if(newWeight > parameters->getMaximumWeight()){newWeight = parameters->getMaximumWeight();}if(newWeight < parameters->getMinimumWeight()){newWeight = parameters->getMinimumWeight();}sumW += newWeight;op.setWeight(newWeight);op.resetScore();op.resetNumberOfCalls();
}

值得注意的是还有一个OperatorManager::recomputeWeights()成员函数是用于重新计算repair或者destroy方法集合的,它的实现主要也还是调用OperatorManager::recomputeWeight(AOperator& op, double& sumW)方法来实现的。

3.3.2 OperatorManager::selectOperator(...)

相信了解过遗传算法轮盘赌实现过程的小伙伴对这里都不会陌生,当然,并不是说权重大的方法一定会被选中,只是被选中的可能性会大而已。具体过程是先生成一个在0到sumWeight之间的中间权重randomWeightPos ,然后从第一个方法开始用变量cumulSum进行权重累加,直到cumulSum>=randomWeightPos 为止,那么停止累加时最后这个方法就是幸运儿了。

AOperator& OperatorManager::selectOperator(std::vector<AOperator*>& vecOp, double sumW)
{double randomVal = static_cast<double>(rand())/static_cast<double>(RAND_MAX);double randomWeightPos = randomVal*sumW;double cumulSum = 0;for(size_t i = 0; i < vecOp.size(); i++){cumulSum += vecOp[i]->getWeight();if(cumulSum >= randomWeightPos){if(noise){vecOp[i]->setNoise();}else{vecOp[i]->unsetNoise();}vecOp[i]->increaseNumberOfCalls();return *(vecOp[i]);}}assert(false);return *(vecOp.back());
}

3.3.3 OperatorManager::updateScores(...)

该成员函数用来更新各个Destroy和Repair方法的成绩。参数是Destroy和Repair方法的集合,以及ALNS迭代过程中的各种状态信息。便于说明下面用rScore和dScore分别代表Repair和Destroy方法的成绩。具体实现如下:

  1. 如果找到新的最优解,rScore+=Sigma1,dScore+=Sigma1。其中Sigma1是设定参数。
  2. 如果当前解得到改进,rScore+=Sigma2,dScore+=Sigma2。其中Sigma2是设定参数。
  3. 如果当前解没有得到改进 and 当前解是之前没有出现过的 and 当前解被接受作为新的解了,rScore+=Sigma3,dScore+=Sigma3。其中Sigma3是设定参数。
void OperatorManager::updateScores(ADestroyOperator& des, ARepairOperator& rep, ALNS_Iteration_Status& status)
{if(status.getNewBestSolution() == ALNS_Iteration_Status::TRUE){rep.setScore(rep.getScore()+parameters->getSigma1());des.setScore(des.getScore()+parameters->getSigma1());performanceRepairOperatorsWithNoise += 1;performanceRepairOperatorsWithoutNoise += 1;}if(status.getImproveCurrentSolution() == ALNS_Iteration_Status::TRUE){rep.setScore(rep.getScore()+parameters->getSigma2());des.setScore(des.getScore()+parameters->getSigma2());performanceRepairOperatorsWithNoise += 1;performanceRepairOperatorsWithoutNoise += 1;}if(status.getImproveCurrentSolution() == ALNS_Iteration_Status::FALSE&& status.getAcceptedAsCurrentSolution() == ALNS_Iteration_Status::TRUE&& status.getAlreadyKnownSolution() == ALNS_Iteration_Status::FALSE){rep.setScore(rep.getScore()+parameters->getSigma3());des.setScore(des.getScore()+parameters->getSigma3());performanceRepairOperatorsWithNoise += 1;performanceRepairOperatorsWithoutNoise += 1;}/* OLD VERSION *//*if(parameters->getNoise()){double randNoise = static_cast<double>(rand())/RAND_MAX;noise = (randNoise<parameters->getProbabilityOfNoise());}*//* NEW VERSION */if(parameters->getNoise()){double performanceRepairOperatorsGlobal = 0;performanceRepairOperatorsGlobal += performanceRepairOperatorsWithNoise;performanceRepairOperatorsGlobal += performanceRepairOperatorsWithoutNoise;double randomVal = static_cast<double>(rand())/RAND_MAX;double randomWeightPos = randomVal*performanceRepairOperatorsGlobal;noise = (randomWeightPos < performanceRepairOperatorsGlobal);}
}

至此,差不过难点都讲完了,不知道你萌都understand了吗?

04 小结

好了,以上就是今天的代码内容,别急着走开哦,后面还有好多好多的内容没讲呢。
这是个天坑,希望大家和小编一起努力,共同填完它。哈哈,谢谢各位的至此。

posted @ 2019-03-23 19:04 短短的路走走停停 阅读( ...) 评论( ...) 编辑 收藏

这篇关于代码 | 自适应大邻域搜索系列之(3) - Destroy和Repair方法代码实现解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/161492

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当