深度模型笔记03 DeepFM原理与应用

2023-10-07 22:38

本文主要是介绍深度模型笔记03 DeepFM原理与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度模型笔记03 DeepFM原理与应用

引言:本节需要先了解关于FM和Deep的一些知识,学习链接参考:datawhale

1. DeepFM网络结构和原理

在这里插入图片描述
简单来说,DeepFM模型由Deep模型和FM模型的输出通过一个sigmoid函数获得。
y = s i g m o i d ( y F M + y D N N ) y=sigmoid(y_FM+y_DNN) y=sigmoid(yFM+yDNN)

  • FM:一阶特征部分与二阶特征交叉部分组成
  • DNN:高阶特征交叉
    在构建模型的时候需要分别对这三部分输入的特征进行选择。

1.1 采用随机梯度下降SGD训练FM

FM模型公式如下:
y ( x ) = w 0 + ∑ i = 1 d w i x i + 1 / 2 ∑ f = 1 k ( ( ∑ i = 1 d v i , f x i ) 2 − ∑ i = 1 d v i , f 2 x i 2 ) y(x)=w_0+\sum_{i=1}^dw_ix_i+1/2\sum_{f=1}^k((\sum_{i=1}^dv_{i,f}x_i)^2-\sum_{i=1}^dv_{i,f}^2x_i^2) y(x)=w0+i=1dwixi+1/2f=1k((i=1dvi,fxi)2i=1dvi,f2xi2)
当FM使用梯度下降法进行学习时,模型的梯度为:
在这里插入图片描述式中, ∑ j = 1 d v i , j x j \sum_{j=1}^dv_{i,j}x_j j=1dvi,jxj只与f有关而与I无关,在每次迭代过程中,可以预先对所有f的 ∑ j = 1 d v i , j x j \sum_{j=1}^dv_{i,j}x_j j=1dvi,jxj进行计算,复杂度 O ( k d ) O(kd) O(kd),就能在常数时间 O ( 1 ) O(1) O(1)内得到 v i , f v_{i,f} vi,f的梯度。而对于其他参数的 w 0 w_0 w0 w i w_i wi,也是在常数时间里计算梯度。此外,更新参数只需要 O ( 1 ) O(1) O(1),一共有 1 + d + k d 1+d+kd 1+d+kd个参数,因此FM参数训练的复杂度也是 O ( k d ) O(kd) O(kd)

1.2 关于Sparse Feature中不同颜色节点代表的含义

  • 灰色节点
  • 黄色节点
    Sparse Feature层总共有M个field,每个field对应k个嵌入维数,而在由输入得到embedding Vector的过程中,需要考虑同一个field位置下0、1的个数。一般对于输入的一条记录,同一个field只有一个位置是1,也就是黄色节点代表的含义。对应的,灰色节点代表的是0的含义。

2.具体构造代码如下:

def DeepFM(linear_feature_columns, dnn_feature_columns):# 构建输入层,即所有特征对应的Input()层,这里使用字典的形式返回,方便后续构建模型dense_input_dict, sparse_input_dict = build_input_layers(linear_feature_columns + dnn_feature_columns)# 将linear部分的特征中sparse特征筛选出来,后面用来做1维的embeddinglinear_sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), linear_feature_columns))# 构建模型的输入层,模型的输入层不能是字典的形式,应该将字典的形式转换成列表的形式# 注意:这里实际的输入与Input()层的对应,是通过模型输入时候的字典数据的key与对应name的Input层input_layers = list(dense_input_dict.values()) + list(sparse_input_dict.values())# linear_logits由两部分组成,分别是dense特征的logits和sparse特征的logitslinear_logits = get_linear_logits(dense_input_dict, sparse_input_dict, linear_sparse_feature_columns)# 构建维度为k的embedding层,这里使用字典的形式返回,方便后面搭建模型# embedding层用户构建FM交叉部分和DNN的输入部分embedding_layers = build_embedding_layers(dnn_feature_columns, sparse_input_dict, is_linear=False)# 将输入到dnn中的所有sparse特征筛选出来dnn_sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), dnn_feature_columns))fm_logits = get_fm_logits(sparse_input_dict, dnn_sparse_feature_columns, embedding_layers) # 只考虑二阶项# 将所有的Embedding都拼起来,一起输入到dnn中dnn_logits = get_dnn_logits(sparse_input_dict, dnn_sparse_feature_columns, embedding_layers)# 将linear,FM,dnn的logits相加作为最终的logitsoutput_logits = Add()([linear_logits, fm_logits, dnn_logits])# 这里的激活函数使用sigmoidoutput_layers = Activation("sigmoid")(output_logits)model = Model(input_layers, output_layers)return model

这篇关于深度模型笔记03 DeepFM原理与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160888

相关文章

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操