Keras实例教程(五)- 使用 GTSRB 用于交通标志识别

2023-10-07 20:32

本文主要是介绍Keras实例教程(五)- 使用 GTSRB 用于交通标志识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集

GTSRB dataset :
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Downloads

该数据集包含43类交通标志,提供的资料中包含标注信息。

【0】 数据准备

  • 根据标注裁剪图像
    在每类的文件夹中,包含若干.ppm格式的图片及一个.csv文件,csv中包含每个ppm图像的标注信息,根据标注信息进行图片裁剪.
    将43类放到同一文件夹Final_Training下,裁剪示例代码:
import os
import sys
from PIL import Image
path = 'C:/Users/Documents/Dataset/GTSRB/Final_Training'csv_files = []
for dirpath, dirnames, filenames in os.walk(path, topdown=False):for filename in filenames:if filename.endswith('.csv'):csv_files.append(os.path.join(dirpath, filename))class TrafficSign:trafficSign_name = ''left_top_x = 0,left_top_y = 0,right_bottom_x = 0,right_bottom_y = 0,width = 0,height = 0,label = ''def tostring(self):print([self.trafficSign_name,self.width, self.height,self.left_top_x, self.left_top_y,self.right_bottom_x, self.right_bottom_y,self.label])for csv in csv_files:base_path = os.path.dirname(csv)# read csv datatrafficSigns = []with open(csv) as file:for line in file:if line.find('.ppm') == -1:continueraw_data = line.split(';')trafficSign = TrafficSign()trafficSign.trafficSign_name = raw_data[0]trafficSign.width = int(raw_data[1])trafficSign.height = int(raw_data[2])trafficSign.left_top_x = int(raw_data[3])trafficSign.left_top_y = int(raw_data[4])trafficSign.right_bottom_x = int(raw_data[5])trafficSign.right_bottom_y = int(raw_data[6])# trafficSign.label = raw_data[7]trafficSigns.append(trafficSign)# crop each image according to the csv in this folderfor dirpath, dirnames, filenames in os.walk(base_path, topdown=False):for filename in filenames:if not filename.endswith('.ppm'):continuefullPath = os.path.join(dirpath, filename)for sign in trafficSigns:if filename == sign.trafficSign_name:image = Image.open(fullPath)# start cropping according to this signregion = (sign.left_top_x, sign.left_top_y, sign.right_bottom_x, sign.right_bottom_y)image_crop = image.crop(region)# update the new image pathnewFullPath = fullPath.replace('GTSRB', 'GTSRB_img_Crop')newFullPath = newFullPath.replace('.ppm', '.bmp')if not os.path.exists(os.path.dirname(newFullPath)):os.makedirs(os.path.dirname(newFullPath))# save the imagesimage_crop.save(newFullPath)break

裁剪后的图片如下所示:
[外链图片转存失败(img-3vH99RSt-1563292422090)(https://note.youdao.com/yws/api/personal/file/907B91B4FD5A4474BE70166DF441E487?method=download&shareKey=86bfa606c65fbdbe99c36ba08d039d69)]

  • 划分训练集和测试集
    观察可以发现,交通标志应该是由远至近的序列中标注裁剪出来的,所以会呈现由小到大的规律,所以在准备训练集和测试集时,随机选择一定比例的方式(我选择80%训练,20%测试),示例代码:
import os
import random
import shutil
path = 'C:/Users/Documents/Dataset/GTSRB_img_Crop/Final_Training'
dirs = []
split_percentage = 0.2
for dirpath, dirnames, filenames in os.walk(path, topdown=False):for dirname in dirnames:fullpath = os.path.join(dirpath, dirname)fileCount = len([name for name in os.listdir(fullpath) if os.path.isfile(os.path.join(fullpath, name))])files = os.listdir(fullpath)for index in range((int)(split_percentage * fileCount)):newIndex = random.randint(0, fileCount - 1)fullFilePath = os.path.join(fullpath, files[newIndex])newFullFilePath = fullFilePath.replace('Final_Training', 'Final_Validation')base_new_path = os.path.dirname(newFullFilePath)if not os.path.exists(base_new_path):os.makedirs(base_new_path)# move the filetry:shutil.move(fullFilePath, newFullFilePath)except IOError as error:print('skip moving from %s => %s' % (fullFilePath, newFullFilePath))

【1】训练和验证

结构十分简单,四个卷积层加上全连接层输出即可。其中的个别的超参数选择,我是参照了GTSRB比赛中成绩最好的那篇文章中提到的一些配置:

CNN with 3 Spatial Transformers, DeepKnowledge Seville, Álvaro Arcos-García and Juan A. Álvarez-García and Luis M. Soria-Morillo, Neural Networks
link

在这篇文章中,提到使用48*48的归一化尺寸以及一些其他的建议,可以详细参阅。如下示例代码简单跑一下():

import shutil
import os
import matplotlib.pyplot as plttrain_set_base_dir = 'C:/Users/Documents/Dataset/GTSRB_img_Crop/Final_Training'
validation_set_base_dir = 'C:/Users/Documents/Dataset/GTSRB_img_Crop/Final_Validation'# start image preprocess
from keras.preprocessing.image import ImageDataGeneratortrain_datagen = ImageDataGenerator(rescale=1. / 255
)
train_data_generator = train_datagen.flow_from_directory(directory=train_set_base_dir,target_size=(48, 48),batch_size=32,class_mode='categorical')validation_datagen = ImageDataGenerator(rescale=1. /255
)validation_data_generator = validation_datagen.flow_from_directory(directory=validation_set_base_dir,target_size=(48, 48),batch_size=32,class_mode='categorical'
)# define a simple CNN network
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropoutmodel = Sequential()# add Con2D layers
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 3)))
model.add(MaxPool2D(pool_size=(2, 2), padding='valid'))model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2), padding='valid'))model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2), padding='valid'))model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2), padding='valid'))# flatten
model.add(Flatten())# dropOut layer
model.add(Dropout(0.2))# add one simple layer for classification
model.add(Dense(units=512, activation='relu'))# add output layer
model.add(Dense(units=43, activation='softmax'))# compile model
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc'])# print model info
model.summary()
json_str = model.to_json()
print(json_str)
# fit_generator to fill in the dataset
history = model.fit_generator(generator=train_data_generator,steps_per_epoch=100,epochs=30,validation_data=validation_data_generator,validation_steps=50)# train done, save the models
model.save('C:/test/WorkingLogs/20181214/traffic_signs.h5')# plot the roc curve
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()plt.show()

简易的网络结构及参与训练测试的样本信息如下:

Found 32117 images belonging to 43 classes.
Found 7092 images belonging to 43 classes.
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 46, 46, 32)        896       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 23, 23, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 21, 21, 64)        18496     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 10, 10, 64)        0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 8, 8, 128)         73856     
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 4, 4, 128)         0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 2, 2, 128)         147584    
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 1, 1, 128)         0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 128)               0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 512)               66048     
_________________________________________________________________
dense_2 (Dense)              (None, 43)                22059     
=================================================================
Total params: 328,939
Trainable params: 328,939
Non-trainable params: 0
_________________________________________________________________

30 epochs的结果是:

100/100 [==============================] - 164s 2s/step - loss: 0.2009 - acc: 0.9556 - val_loss: 0.1103 - val_acc: 0.9755

[外链图片转存失败(img-ZboIncn5-1563292422092)(https://note.youdao.com/yws/api/personal/file/F3EDD169650C4688A3E488C78C1DBBE0?method=download&shareKey=3de2a6edc55e615c5cb07debdde37e0b)]
[外链图片转存失败(img-70alovNI-1563292422092)(https://note.youdao.com/yws/api/personal/file/29793553083A4AC2B59FC0F6E5A4B434?method=download&shareKey=fa5fd03cb56f6db8441b7795732be4be)]

【3】结论

从结果可以看出,即使是简单的网络结构,在精确标注的大量数据下可以获得很好的效果。同时还可以通过pre-trained模型如VGG-16等提取特征再加入某些层进行fine-tuned等。
在上面推荐的那片论文中,还提出使用spatial-transformer层进行优化,也很值得尝试。

这篇关于Keras实例教程(五)- 使用 GTSRB 用于交通标志识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160265

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3

C# IPAddress 和 IPEndPoint 类的使用小结

《C#IPAddress和IPEndPoint类的使用小结》本文主要介绍了C#IPAddress和IPEndPoint类的使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录一、核心作用网络编程基础类二、IPAddress 类详解三种初始化方式1. byte 数组初始化2. l

C语言逗号运算符和逗号表达式的使用小结

《C语言逗号运算符和逗号表达式的使用小结》本文详细介绍了C语言中的逗号运算符和逗号表达式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 在C语言中逗号“,”也是一种运算符,称为逗号运算符。 其功能是把两个表达式连接其一般形式为:表达