计算机数据存储与读取原理,读写存储器RAM-微计算机原理-电子发烧友网站

本文主要是介绍计算机数据存储与读取原理,读写存储器RAM-微计算机原理-电子发烧友网站,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第三节 读写存储器RAM

本节内容:

一、 基本存储电路

二、 RAM的结构

三、 典型RAM芯片举例

四、 RAM与CPU的连接

§5.3.1 基本存储电路

一个基本存储电路存储一位二进制信息0或1。它是存储器的核心。

1、SRAM基本存储电路

SRAM的基本存储电路的核心是MOS管构成的双稳态触发器。

59c710fa498623679e1dda7567e0a938.png

MOS(场效应)管的工作特性如左图所示。

MOS管构成的双稳态触发器:

b2b9b8f99a5d79f79ed5eb2ee1072d60.png

T3、T4的g、s端连在一起,vgs=0,d、s呈现高阻,该大电阻作为负载。 双稳态触发器有两个稳定状态:

① 若T1导通,A=0,使T2截止,B=1,B=1又保证T1导通。该状态表示存储信息0。(A=0)。

② 若T1截止,A=1,使T2导通,B=0,B=0又保证T1截止。该状态表示存储信息1。(A=1)。

为了将信息0/1写入或读出触发器,就需要加控制电路。加入控制电路的基本存储单元如下图:

0b2585606abfa1a7b74fe93fbf64c6b4.png

写操作:CPU送出地址信号、数据信号D和写入信号R/W=0。地址信号分成行地址和列地址,行地址经"行选择译码"产生行选择线信号,使该基本存储电路被选中,T5、T6导通;列地址经"列选择译码"产生列选择线信号,使T7、T8导通。R/W=0,三态缓冲器A1、A3导通,A2禁止,数据信号D经A1、A3、T7、T8、T5、T6进入该基本存储电路。

如写入1,则I/O=1、I/O=0,它们使A=1、B=0,T1截止、T2导通,即数据1被写入。

如写入0,则I/O=0、I/O=0,它们使A=0、B=1,T1导通、T2截止,即数据0被写入。

在写入完成后,地址信号消失,T5、T6、T7、T8截止,双稳态电路保持写入的信息不变。或者说,写入过程相当于将输入电荷存储到T1、T2的栅极上。在写入信号和选择信号消失后,两个作为负载电阻的T3、T4和电源Vcc相连,从而可以不断地往T1、T2的栅极补充电荷(T3给T2、T4给T1补充),加上T1、T2互相控制,能够保持住所写入的数据。

读操作:CPU送出地址信号,R/W=1。T5、T6、T7、T8导通,R/W=1,三态缓冲器A2导通,A1、A3禁止,基本存储电路A点状态经T5、T7、A2送至数据线D。A=1表示D=1,A=0表示D=0。在读出后,基本存储电路的状态不发生变化,即读操作是非破坏性的。

SRAM的特点:

(1) 采用CMOS电路构成,读出/写入速度快(5~15ns)。

(2) 所用管子数目多,单个器件的容量小,如256×4,16Kb×1,64Kb×8。

(3) T1、T2总有一个处于导通状态,使得SRAM的功耗较大。

2、 DRAM基本存储电路(单管DRAM基本存储电路)

数据以电荷形式存在电容C上,当C上有电荷,表示信息1;当C上无电荷,表示信息0。

写操作时,"行选择信号"为1,Q导通,若"列选择信号"为1,该基本存储电路被选中,由"数据输入/输出线"送来的信息通过刷新放大器和Q管送入到电容C。

读操作时,"行选择信号"为高电平,使存储矩阵中该行的所有基本存储电路的Q管导通,"刷新放大器"读取对应电容C上的电压值,刷新放大器的灵敏度很高,放大倍数很大,并且能将从电容上读得的电压值折合为逻辑"0"或逻辑"1"。"

这篇关于计算机数据存储与读取原理,读写存储器RAM-微计算机原理-电子发烧友网站的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/158290

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

10. 文件的读写

10.1 文本文件 操作文件三大类: ofstream:写操作ifstream:读操作fstream:读写操作 打开方式解释ios::in为了读文件而打开文件ios::out为了写文件而打开文件,如果当前文件存在则清空当前文件在写入ios::app追加方式写文件ios::trunc如果文件存在先删除,在创建ios::ate打开文件之后令读写位置移至文件尾端ios::binary二进制方式

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi