sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验

本文主要是介绍sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课程1_第1周_测验题

目录:目录

第一题

1.“人工智能是新电力” 这个比喻指的是什么?

A. 【  】人工智能为我们的家庭和办公室的个人设备供电,类似于电力。

B. 【  】通过“智能电网”,人工智能正在传递新一波的电力。

C. 【  】人工智能在计算机上运行,因此由电力驱动,但它让计算机做以前不可能做的事情。

D. 【  】与100年前开始的电力类似,人工智能正在改变多个行业。

答案:

D.【 √ 】与100年前开始的电力类似,人工智能正在改变多个行业。

第二题

2.以下哪些是最近深度学习开始崛起的原因?(选2个答案)

A. 【  】我们拥有了更多的计算能力。

B. 【  】神经网络是一个崭新的领域。

C. 【  】我们有了更多的数据。

D. 【  】深度学习在诸如在线广告、语音识别和图像识别等重要应用方面取得了显著的改进。

答案:

A.【 √ 】我们拥有了更多的计算能力

C.【 √ 】我们有了更多的数据。

第三题

3.回想一下这个机器学习迭代的图。以下哪项陈述是正确的?(选出所有正确项)
在这里插入图片描述

A. 【  】能够快速地尝试各种想法可以让深入学习的工程师更快地迭代。

B. 【  】更快的计算有助于加快团队迭代一个好主意所需的时间。

C. 【  】在大数据集上训练比在小数据集上训练更快。

D. 【  】深度学习算法的最新进展使我们能够更快地训练好的模型(即使不改变CPU/GPU硬件)。

答案:

A.【 √ 】能够快速地尝试各种想法可以让深入学习的工程师更快地迭代。

B.【 √ 】更快的计算有助于加快团队迭代一个好主意所需的时间。

D.【 √ 】深度学习算法的最新进展使我们能够更快地训练好的模型(即使不改变CPU/GPU硬件)。

第四题

4.当一个有经验的深度学习工程师处理一个新问题时,他们通常可以在第一次尝试时利用以前问题的洞察力来训练一个好的模型,而不需要在不同的模型中重复多次。

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第五题

5.这些图中的哪一个表示ReLU激活函数?

A. 【  】
在这里插入图片描述

B. 【  】
在这里插入图片描述

C. 【  】
在这里插入图片描述

D. 【  】
在这里插入图片描述

答案:

C.【 √ 】
在这里插入图片描述

第六题

6.用于猫识别的图像是“结构化”数据的一个例子,因为它在计算机中表示为结构化的数组。

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第七题

7.人口数据集包含不同城市人口、人均GDP、经济增长的统计数据,这是“非结构化”数据的一个例子,因为它包含来自不同来源的数据。

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第八题

8.为什么RNN(递归神经网络)被用于机器翻译,比如说将英语翻译成法语?(选出所有正确项)

A. 【  】它可以训练成一个有监督的学习问题。

B. 【  】它比卷积神经网络(CNN)更强大。

C. 【  】当输入/输出是一个序列(例如,一个单词序列)时适用。

D. 【  】RNN表示 想法->代码->实验->想法->… 的循环过程。

答案:

A.【 √ 】它可以训练成一个有监督的学习问题

C.【 √ 】当输入/输出是一个序列(例如,一个单词序列)时适用

第九题

9.在这PPT截图中,水平轴(X轴)和垂直轴(Y轴)代表什么?
在这里插入图片描述

A. 【  】X轴代表数据量,Y轴代表模型规模

B. 【  】X轴代表数据量,Y轴代表模型表现

C. 【  】X轴代表模型表现,Y轴代表数据量

D. 【  】X轴代表模型的输入,Y轴代表输出

答案:

B.【 √ 】X轴代表数据量,Y轴代表模型表现

第十题

10.假设前一个问题中所描述的趋势是准确的(并且希望你的坐标轴标签正确),下列哪一个是正确的?(选出所有正确项)

A. 【  】增加训练集的大小通常不会影响算法的性能,而且可能会有很大帮助。

B. 【  】增加神经网络的规模通常不会影响算法的性能,而且可能会有很大帮助。

C. 【  】减小训练集的大小通常不会影响算法的性能,而且可能会有很大帮助。

D. 【  】减小神经网络的规模通常不会影响算法的性能,而且可能会有很大帮助。

答案:

A.【 √ 】增加训练集的大小通常不会影响算法的性能,而且可能会有很大帮助。

B.【 √ 】增加神经网络的规模通常不会影响算法的性能,而且可能会有很大帮助。

这篇关于sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157373

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java下载文件中文文件名乱码的解决方案(文件名包含很多%)

《Java下载文件中文文件名乱码的解决方案(文件名包含很多%)》Java下载文件时,文件名中文乱码问题通常是由于编码不正确导致的,使用`URLEncoder.encode(filepath,UTF-8... 目录Java下载文件中文文件名乱码问题一般情况下,大家都是这样为了解决这个问题最终解决总结Java下

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取