2023版 STM32实战6 输出比较(PWM)包含F407/F103方式

2023-10-07 01:15

本文主要是介绍2023版 STM32实战6 输出比较(PWM)包含F407/F103方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

输出比较简介和特性

-1-只有通用/高级定时器才能输出PWM

-2-占空比就是高电平所占的比例

-3-输出比较就是输出不同占空比的信号

工作方式说明

-1-1- PWM工作模式
在这里插入图片描述

-1-2- 有效/无效电平

有效电平可以设置为高或低电平,是自己配置的

周期选择与计算

周期=重装载 * 预分频值 / 时钟频率
在这里插入图片描述
arr和psc是自己定义的 时钟频率可以查看时钟树,即下图中的84MHZ

在这里插入图片描述
在这里插入图片描述

F1和F4采用的时钟频率

F1通过72MHZ分频

F4通过84MHZ分频

HZ代表单位时间震荡次数,如1MHZ,就是一秒震荡1000000次

代码分享(一路PWM输出,F1可直接使用)

void TIM3_PWM_Init(u16 arr,u16 psc)
{  GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);	//使能定时器3时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB  | RCC_APB2Periph_AFIO, ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射  TIM3_CH2->PB5    //设置该引脚为复用输出功能,输出TIM3 CH2的PWM脉冲波形	GPIOB.5GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //TIM_CH2GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO//初始化TIM3TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位//初始化TIM3 Channel2 PWM模式	 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高TIM_OC2Init(TIM3, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM3 OC2TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);  //使能TIM3在CCR2上的预装载寄存器TIM_Cmd(TIM3, ENABLE);  //使能TIM3}

代码分享(四路PWM输出,F4可直接使用)

#include "stm32f4xx.h"TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
TIM_OCInitTypeDef  TIM_OCInitStructure;
uint16_t CCR1_Val = 333;
uint16_t CCR2_Val = 249;
uint16_t CCR3_Val = 166;
uint16_t CCR4_Val = 83;
uint16_t PrescalerValue = 0;void TIM_Config(void);void PWM_Config (void);
int main()
{TIM_Config();PWM_Config();while (1){}}void TIM_Config(void){GPIO_InitTypeDef GPIO_InitStructure;/* TIM3 clock enable */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);/* GPIOC clock enable */RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);/* GPIOC Configuration: TIM3 CH1 (PC6), TIM3 CH2 (PC7), TIM3 CH3 (PC8) and TIM3 CH4 (PC9) */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ;GPIO_Init(GPIOC, &GPIO_InitStructure); /* Connect TIM3 pins to AF2 */  GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM3);GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_TIM3); GPIO_PinAFConfig(GPIOC, GPIO_PinSource8, GPIO_AF_TIM3);GPIO_PinAFConfig(GPIOC, GPIO_PinSource9, GPIO_AF_TIM3); }void PWM_Config (void)
{PrescalerValue = (uint16_t) ((SystemCoreClock /2) / 21000000) - 1;/* Time base configuration */TIM_TimeBaseStructure.TIM_Period = 665;TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;TIM_TimeBaseStructure.TIM_ClockDivision = 0;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);/* PWM1 Mode configuration: Channel1 */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = CCR1_Val;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OC1Init(TIM3, &TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);/* PWM1 Mode configuration: Channel2 */TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = CCR2_Val;TIM_OC2Init(TIM3, &TIM_OCInitStructure);TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);/* PWM1 Mode configuration: Channel3 */TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = CCR3_Val;TIM_OC3Init(TIM3, &TIM_OCInitStructure);TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);/* PWM1 Mode configuration: Channel4 */TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = CCR4_Val;TIM_OC4Init(TIM3, &TIM_OCInitStructure);TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);TIM_ARRPreloadConfig(TIM3, ENABLE);/* TIM3 enable counter */TIM_Cmd(TIM3, ENABLE);}

全部工程获取

三联,关注后点击头像获取

这篇关于2023版 STM32实战6 输出比较(PWM)包含F407/F103方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/155164

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念