指数分布优化器(EDO)(含MATLAB代码)

2023-10-06 22:04

本文主要是介绍指数分布优化器(EDO)(含MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年提出的新型智能优化算法,并附MATLAB代码。

“今天给大家推送的也是2023年提出的一种新算法,发表在AIRE上,这个期刊目前影响因子12,还是很有含金量。就这个算法效果而言,我觉得还可以,并且它框架也简单~

另外,这个算法基于指数分布理论,没有什么好看的图,更多的是数学公式,学起来可能有点枯燥~”

图片

该研究提出了一种新的基于种群的元启发式算法,称为指数分布优化器(Exponential Distribution Optimizer, EDO)。EDO的主要灵感来自于数学中的指数概率分布模型。EDO算法包括了开发策略和勘探策略。利用CEC2014、CEC2017、CEC2020和CEC2022等测试套件以及6个工程设计问题将EDO算法与L-SHADE、LSHADE-cnEpSin和AGSK进行了比较。EDO得到了更理想的结果,并且统计分析在95%的置信区间上证明了EDO的优越性。它的原始参考文献如下:

Abdel-Basset M, El-Shahat D, Jameel M, et al. Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems[J]. Artificial Intelligence Review, 2023: 1-72.

01
预备知识

指数分布理论是EDO算法的灵感来源。

指数分布是一种连续分布,常用于描述各种自然现象。例如,从现在到地震袭击的等待时间呈指数分布。此外,车辆到达收费站的概率随时间呈指数分布。假设有一个指数随机变量x,参数为λ,可以写成xEXP(λ)。该随机变量的概率密度函数(Probability Density Function, PDF)可表示为:

图片

其中,x表示在事件发生前的等待时间。时间是连续的,不能是一个负值,即x≥0。此外,参数λ>0是指数分布的速率。利用该公式可计算得到指数累积分布函数(Cumulative Distribution Function, CDF):

图片

图1显示了衰减参数λ对指数PDF的影响,使用相同的x值和四个不同的λ值(0.25、0.5、0.75和1)。曲线从λ值开始,并逐渐下降。因此,指数分布总是一个关于PDF的递减函数。指数率的值越大,相关的指数随机变量的PDF值就越小。图2展现了使用不同的λ值的CDF曲线的情况。它是一个递增函数,从指数速率开始,CDF随指数随机变量的增加而增加。

图片

图1 不同λ值对应的PDF

图片

图2 不同λ值对应的指数CDF

指数分布随机变量的均值(μ)和方差(σ^2)可以表示为:

图片

从前面的方程中,可以认为参数λ的值与均值和方差值成反比,反之亦然。换句话说,λ值越大,均值和方差值就越小。那么,标准差(σ)与均值相等,可计算如下:

图片

如果只想了解算法的计算流程,可以不看这一节的。这一节就是介绍一下指数分布模型,知不知道都不怎么影响。不是数学专业的同学,可以了解一下。

02
算法设计

为了便于大家理解,介绍算法时就直接抬出公式和流程,就不过多讨论作者的设计思路和出发点了(哎呀,动机、思路、出发点这些都是写给审稿人看的,能自圆其说就行的,了解来也没啥用,知道算法怎么计算的就行了)。与往期推送一样,这部分内容在Word文档里先写好,然后做成图片,最后导入。

图片

图片

03
计算流程

EDO算法的计算流程伪代码如下(公式序号对应上文):

图片

04
实验仿真

这里对EDO算法的性能进行简单的测试。首先将EDO用于函数寻优,算法的MATLAB程序是严格按照它的原始参考文献进行编码的。此外,种群规模取N等于50,Benchmark函数分别采用了CEC2005测试集、CEC2013测试集、CEC2014测试集、CEC2017测试集、CEC2020优化函数测试集和CEC2022优化函数测试集。仅对仿真结果进行简要展示,不再进一步分析。
 首先,检验一下EDO对全局勘探和局部开发的平衡能力。不知道我在说啥的,看一下之前的这一期推送:
种群的勘探(Exploration)与开发(Exploitation)(含MATLAB代码)

如图3所示,是EDO在CEC2005测试函数f7上的勘探和开发占比曲线。

图片

图3 EDO在CEC2005 f7上的勘探和开发百分占比变化曲线

其次,利用CEC2005测试集验证EDO的性能,这里选择今年很火热的蜣螂优化(DBO)算法进行对比(为了对比的公平,两种算法的种群大小设置为30,最大迭代次数为200)。对比结果如下所示:

EDO Vs DBO

可以看到,EDO的竞争力还是很可观的,在一些函数上收敛曲线突然不见了,是因为已经收敛到理论最优值0了。我使用的是semilogy来绘制的收敛曲线,而semilogy画的是y轴的对数,因此,若曲线收敛到0,semilogy是画不出来的。那么,EDO在绝大部分的函数上,用了不到两百次迭代就收敛到了最优值。在CEC2005的大部分函数上,相比于DBO,EDO算法更简单,收敛速度更快,且收敛精度更高。对EDO算法,我本人还是比较推荐的,简单易实现,并且没有调参,不涉及需要用户改动的参数。

再次,以CEC2013测试集中的单峰函数F1为例,展示EDO在30维环境下的收敛效果,如图4所示。(注意是画的误差曲线)

图片

图4 EDO在CEC2013 F1上的误差收敛曲线

接着,以CEC2014测试集中的多模态函数F14为例,展示EDO在30维环境下的收敛效果,如图5所示。(注意是画的误差曲线)

图片

图5 EDO在CEC2014 F14上的误差收敛曲线

再然后,以CEC2017测试集中的多模态函数F4为例,展示EDO在30维环境下的收敛效果,如图6所示。(注意是画的误差曲线)

图片

图6 EDO在CEC2017 F4上的误差收敛曲线

在此之后,以CEC2020优化函数测试集中的单峰函数F2为例,展示EDO在10维环境下的收敛效果,如图7所示。(注意是画的误差曲线)

图片

图7 EDO在CEC2020优化函数F2上的误差收敛曲线

最后,以CEC2022优化函数测试集中的单峰函数F1为例,展示EDO在10维环境下的收敛效果,如图8所示。(注意是画的误差曲线)

图片

图8 EDO在CEC2022优化函数F1上的误差收敛曲线

进一步,可将EDO应用于复杂工程约束优化问题,例如之前推送的两期算法应用内容:

算法应用:基于DBO算法的工程优化设计(第1期)(含MATLAB代码)

算法应用:工程优化设计(第2期)(含MATLAB代码)

这里以行星轮系设计优化问题(Planetary gear train design optimization problem)为例,展示EDO求解效果。该问题的主要目标是使汽车齿轮传动比的最大误差最小化,如图9所示。为了使最大误差最小化,计算了自动行星传动系统的总齿数。

图片

图9 行星轮系设计优化问题(Planetary gear train design)

该问题包含6个整数变量和11个不同的几何约束和装配约束(10个不等式约束,1个等式约束)。这个问题可以定义如下:

图片

采用罚函数处理约束条件,然后利用EDO算法进行求解,最优值和最优解如下所示。目标函数的收敛曲线如图10所示。

图片

图片

图10 EDO在行星轮系设计问题上的目标函数收敛曲线

05
MATLAB代码

EDO算法对应的MATLAB代码链接如下:

EDO跑CEC2005测试集公众号里有链接
EDO跑CEC2013测试集公众号里有链接
EDO跑CEC2014测试集公众号里有链接
EDO跑CEC2017测试集公众号里有链接
EDO跑CEC2020优化函数测试集公众号里有链接
EDO跑CEC2022优化函数测试集公众号里有链接
EDO的勘探(Exploration)和开发(Exploitation)占比分析公众号里有链接
EDO的工程应用(第1期):压力容器设计、滚动轴承设计、拉伸/压缩弹簧设计、悬臂梁设计、轮系设计、三杆桁架设计公众号里有链接
EDO的工程应用(第2期):焊接梁设计、多盘离合器制动器设计问题、步进圆锥滑轮问题、减速机设计问题、行星轮系设计优化问题、机器人夹持器问题公众号里有链接

可通过下方链接下载代码清单,在里面寻找需要的算法代码,然后去对应的链接获取。清单会同步更新,一旦有新的代码,就可以在清单里找到。清单里面有部分代码是开源获取的。可随时免费下载。

链接:https://pan.baidu.com/s/1n2vpbwuhpA8oyXSJGsAsmA

提取码:8023

这篇关于指数分布优化器(EDO)(含MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154165

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st