Football数据集可视化处理——gephi可视化处理数据

2023-10-06 21:59

本文主要是介绍Football数据集可视化处理——gephi可视化处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#1 football数据集的文件格式
根据如图所示football数据集和的文件格式如下所示:
下图表示football数据集节点部分信息
这里写图片描述
下图表示football数据集边的部分信息
这里写图片描述
根据上述两个图中的格式对football数据集的格式介绍可以介绍为如下所示:

Creator "Mark Newman on Sat Jul 22 05:32:16 2006"
graph
[node[id **value **label ****]...node[id **value **label ****]edge[id **value **label ****]...edge[id ***value **label ****]
]

#2 football数据集文件格式的转化
根据上述的football文件,我们将数据文件转化成两个文件,这两个文件分别用来存储football数据集的边信息和节点信息,对football数据集文件的处理如下。
##2.1 football数据集节点信息文件
根据gephi通过csv导入信息的需要,我们将数据信息处理成如下的数据集节点文件格式:

Id Label Value
1  Tom   3
2  Bob   4

在football数据集中将football.gml文件处理得到的结果如下所示:
这里写图片描述
其中:

Id:用于标识唯一的一个点
Label:标识节点的标签或者是名称
Value:标识节点的所属的社区。

##2.2 football数据集边信息文件
根据gephi通过csv导入数据的格式,我们分为有向图和无向图两种数据格式,对于有向图的导入数据格式如下所示:

Source Target Weight
1 3 2
2 4 1
根据上述公式:
Source:表示源节点
Target:表示目的结点
Weight:表示对应的边的权重

在无向图的导入中需要加入Type类型得出的数据格式如下所示:

Source Target Weigth Type
1 3 2 Undirected
2 4 1 Undirected

如下图所示为football数据集的数据个格式,football数据集是无权图因此没有有weight。
这里写图片描述

在football数据集的616条边中有三条边是重复出现的分别为

28 18
85 4
100 15

在通过gephi对这些边进行模块化社区划分运算的时候需要将这些边删除,否则无法运行。
##2.3 对football.gml处理代码

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;int main()
{FILE* inputfile = NULL;FILE* nodefile = NULL;FILE* edgefile = NULL;inputfile = fopen("football.gml","r");nodefile = fopen("nodefile.txt","w");edgefile = fopen("edgefile.txt","w");fprintf(nodefile, "Id Label Value\n");fprintf(edgefile,"Source Target Type\n");char strLine[1024];int i = 0;int node = 0;int edge = 0;//char nodeinfo[100];char edgeinfo[100];while(!feof(inputfile)){fgets(strLine,1024, inputfile);if(strncmp(strLine+4,"id",2)==0 ){char id[5];char label[50];char value[5];memset(label,0,50);int idint = 0, valueint = 0;int copylen = 0;copylen = strlen(strLine) - 8;strncpy(id,strLine+7,copylen);idint = atoi(id)+1;fgets(strLine,1024, inputfile);copylen = strlen(strLine) - 13;strncpy(label,strLine+11,copylen);fgets(strLine,1024, inputfile);copylen = strlen(strLine) - 10;strncpy(value,strLine+10,copylen);valueint = atoi(value)+1;//cout << valueint << endl;fprintf(nodefile,"%d %s %d\n",idint,label,valueint);}if(strncmp(strLine+4,"source",6)==0){char target[5];char source[5];int sourceint = 0,targetint = 0;memset(target,0,5);memset(source,0,5);int copylen = 0;copylen = strlen(strLine)-12;strncpy(source,strLine+11,copylen);sourceint = atoi(source)+1;fgets(strLine,1024, inputfile);copylen = strlen(strLine)-12;strncpy(target,strLine+11,copylen);targetint = atoi(target)+1;fprintf(edgefile,"%d %d undirected\n",sourceint,targetint);}}fclose(nodefile);fclose(edgefile);return 0;
}

#3 gephi点表和边表的导入并生成football图像
(1)点击文件->Import spreadsheet如下图所示:
这里写图片描述

(2)选择需要导入的文件进行数据导入
这里写图片描述
注意选择导入的是边表格还是点表格

(3)点击模块化
这里写图片描述

(4)设置参数为0.4
这里写图片描述

(5)选择节点的渲染方式为Modularity Class
这里写图片描述
(6)得到football的社区划分和真实社区对比

football数据集通过gephi进行社区划分的结果(不带有边的图)
这里写图片描述
football数据集真实社区的结果(不带有边的图)
这里写图片描述
football数据集通过gephi进行社区划分的结果(带有边的图)
这里写图片描述
football数据集真实社区的结果(带有边的图)
这里写图片描述

根据上述的结果我们可以对比得到gephi生成的社区和真实社区的差别,并且最终得到如下所示的两张对比图片。

gephi基于模块度生成社区划分的图片
这里写图片描述
football给出的标签的真实社区图片
这里写图片描述
football数据集以及相关数据集下载地址
CSDN下载链接

这篇关于Football数据集可视化处理——gephi可视化处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154135

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指