Football数据集可视化处理——gephi可视化处理数据

2023-10-06 21:59

本文主要是介绍Football数据集可视化处理——gephi可视化处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#1 football数据集的文件格式
根据如图所示football数据集和的文件格式如下所示:
下图表示football数据集节点部分信息
这里写图片描述
下图表示football数据集边的部分信息
这里写图片描述
根据上述两个图中的格式对football数据集的格式介绍可以介绍为如下所示:

Creator "Mark Newman on Sat Jul 22 05:32:16 2006"
graph
[node[id **value **label ****]...node[id **value **label ****]edge[id **value **label ****]...edge[id ***value **label ****]
]

#2 football数据集文件格式的转化
根据上述的football文件,我们将数据文件转化成两个文件,这两个文件分别用来存储football数据集的边信息和节点信息,对football数据集文件的处理如下。
##2.1 football数据集节点信息文件
根据gephi通过csv导入信息的需要,我们将数据信息处理成如下的数据集节点文件格式:

Id Label Value
1  Tom   3
2  Bob   4

在football数据集中将football.gml文件处理得到的结果如下所示:
这里写图片描述
其中:

Id:用于标识唯一的一个点
Label:标识节点的标签或者是名称
Value:标识节点的所属的社区。

##2.2 football数据集边信息文件
根据gephi通过csv导入数据的格式,我们分为有向图和无向图两种数据格式,对于有向图的导入数据格式如下所示:

Source Target Weight
1 3 2
2 4 1
根据上述公式:
Source:表示源节点
Target:表示目的结点
Weight:表示对应的边的权重

在无向图的导入中需要加入Type类型得出的数据格式如下所示:

Source Target Weigth Type
1 3 2 Undirected
2 4 1 Undirected

如下图所示为football数据集的数据个格式,football数据集是无权图因此没有有weight。
这里写图片描述

在football数据集的616条边中有三条边是重复出现的分别为

28 18
85 4
100 15

在通过gephi对这些边进行模块化社区划分运算的时候需要将这些边删除,否则无法运行。
##2.3 对football.gml处理代码

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;int main()
{FILE* inputfile = NULL;FILE* nodefile = NULL;FILE* edgefile = NULL;inputfile = fopen("football.gml","r");nodefile = fopen("nodefile.txt","w");edgefile = fopen("edgefile.txt","w");fprintf(nodefile, "Id Label Value\n");fprintf(edgefile,"Source Target Type\n");char strLine[1024];int i = 0;int node = 0;int edge = 0;//char nodeinfo[100];char edgeinfo[100];while(!feof(inputfile)){fgets(strLine,1024, inputfile);if(strncmp(strLine+4,"id",2)==0 ){char id[5];char label[50];char value[5];memset(label,0,50);int idint = 0, valueint = 0;int copylen = 0;copylen = strlen(strLine) - 8;strncpy(id,strLine+7,copylen);idint = atoi(id)+1;fgets(strLine,1024, inputfile);copylen = strlen(strLine) - 13;strncpy(label,strLine+11,copylen);fgets(strLine,1024, inputfile);copylen = strlen(strLine) - 10;strncpy(value,strLine+10,copylen);valueint = atoi(value)+1;//cout << valueint << endl;fprintf(nodefile,"%d %s %d\n",idint,label,valueint);}if(strncmp(strLine+4,"source",6)==0){char target[5];char source[5];int sourceint = 0,targetint = 0;memset(target,0,5);memset(source,0,5);int copylen = 0;copylen = strlen(strLine)-12;strncpy(source,strLine+11,copylen);sourceint = atoi(source)+1;fgets(strLine,1024, inputfile);copylen = strlen(strLine)-12;strncpy(target,strLine+11,copylen);targetint = atoi(target)+1;fprintf(edgefile,"%d %d undirected\n",sourceint,targetint);}}fclose(nodefile);fclose(edgefile);return 0;
}

#3 gephi点表和边表的导入并生成football图像
(1)点击文件->Import spreadsheet如下图所示:
这里写图片描述

(2)选择需要导入的文件进行数据导入
这里写图片描述
注意选择导入的是边表格还是点表格

(3)点击模块化
这里写图片描述

(4)设置参数为0.4
这里写图片描述

(5)选择节点的渲染方式为Modularity Class
这里写图片描述
(6)得到football的社区划分和真实社区对比

football数据集通过gephi进行社区划分的结果(不带有边的图)
这里写图片描述
football数据集真实社区的结果(不带有边的图)
这里写图片描述
football数据集通过gephi进行社区划分的结果(带有边的图)
这里写图片描述
football数据集真实社区的结果(带有边的图)
这里写图片描述

根据上述的结果我们可以对比得到gephi生成的社区和真实社区的差别,并且最终得到如下所示的两张对比图片。

gephi基于模块度生成社区划分的图片
这里写图片描述
football给出的标签的真实社区图片
这里写图片描述
football数据集以及相关数据集下载地址
CSDN下载链接

这篇关于Football数据集可视化处理——gephi可视化处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154135

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.