sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验

本文主要是介绍sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课程1_第3周_测验题

目录:目录

第一题

1.以下哪一项是正确的?

A. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第12层,第2个训练数据的激活向量。

B. 【  】X是一个矩阵,其中每个列都是一个训练示例。

C. 【  】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个训练数据的激活输出。

D. 【  】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个神经元的激活输出。

E. 【  】 a [ 2 ] a^{[2]} a[2] 表示第2层的激活向量。

F. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第2层,第12个数据的激活向量。

G. 【  】 X X X是一个矩阵,其中每个行是一个训练数据。

答案:

B.【 √ 】X是一个矩阵,其中每个列都是一个训练示例。

D.【 √ 】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个神经元的激活输出。

E.【 √ 】 a [ 2 ] a^{[2]} a[2] 表示第2层的激活向量。

F.【 √ 】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第2层,第12个数据的激活向量。

第二题

2.对于隐藏单元,tanh激活通常比sigmoid激活函数更有效,因为其输出的平均值接近于零,因此它可以更好地将数据集中到下一层。

A. 【  】对
B. 【  】不对

答案:

A.【 √ 】对

note:正如tanh所看到的,tanh的输出在-1和1之间,因此它将数据集中在一起,使得下一层的学习变得更加简单。

第三题

3.以下哪一个是层的正向传播的正确矢量化实现,其中 1 ≤ l ≤ L 1 \le l \le L 1lL

A. 【  】

Z [ l ] = W [ l ] A [ l ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l]}+b^{[l]} Z[l]=W[l]A[l]+b[l]

A [ l + 1 ] = g [ l ] ( Z [ l ] ) A^{[l+1]}=g^{[l]}(Z^{[l]}) A[l+1]=g[l](Z[l])

B. 【  】

Z [ l ] = W [ l ] A [ l ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l]}+b^{[l]} Z[l]=W[l]A[l]+b[l]

A [ l + 1 ] = g [ l + 1 ] ( Z [ l ] ) A^{[l+1]}=g^{[l+1]}(Z^{[l]}) A[l+1]=g[l+1](Z[l])

C. 【  】

Z [ l ] = W [ l − 1 ] A [ l ] + b [ l ] Z^{[l]}=W^{[l-1]}A^{[l]}+b^{[l]} Z[l]=W[l1]A[l]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

D. 【  】

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} Z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

答案:

D.【 √ 】

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} Z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

第四题

4.您正在构建一个用于识别黄瓜(y=1)与西瓜(y=0)的二进制分类器。对于输出层,您建议使用哪一个激活函数?

A. 【  】ReLU
B. 【  】Leaky ReLU
C. 【  】sigmoid
D. 【  】tanh

答案:

C.【 √ 】sigmoid

note:

  1. 来自sigmoid函数的输出值可以很容易地理解为概率。
  2. Sigmoid输出的值介于0和1之间,这使其成为二元分类的一个非常好的选择。 如果输出小于0.5,则可以将其归类为0,如果输出大于0.5,则归类为1。 它也可以用tanh来完成,但是它不太方便,因为输出在-1和1之间。

第五题

5.考虑以下代码:
A = np.random.randn(4,3)
B = np.sum(A, axis = 1, keepdims = True)
B.shape是多少?

A. 【  】(4,)

B. 【  】(1, 3)

C. 【  】(, 3)

D. 【  】(4, 1)

答案:

D.【 √ 】shape = (4, 1)

note:我们使用(keepdims = True)来确保A.shape是(4,1)而不是(4,),它使我们的代码更加严格。

第六题

6.假设你已经建立了一个神经网络。您决定将权重和偏差初始化为零。以下哪项陈述是正确的?(选出所有正确项)

A. 【  】第一隐藏层中的每个神经元将执行相同的计算。因此,即使在梯度下降的多次迭代之后,层中的每个神经元将执行与其他神经元相同的计算。

B. 【  】第一隐层中的每个神经元在第一次迭代中执行相同的计算。但是在梯度下降的一次迭代之后,他们将学会计算不同的东西,因为我们已经“破坏了对称性”。

C. 【  】第一个隐藏层中的每个神经元将执行相同的计算,但不同层中的神经元执行不同的计算,因此我们完成了课堂上所描述的“对称性破坏”。

D. 【  】即使在第一次迭代中,第一个隐藏层的神经元也会执行不同的计算,因此,它们的参数会以自己的方式不断演化。

答案:

A.【 √ 】第一个隐藏层中的每个神经元节点将执行相同的计算。 所以即使经过多次梯度下降迭代后,层中的每个神经元节点都会计算出与其他神经元节点相同的东西。

第七题

7.逻辑回归的权重w应该随机初始化,而不是全部初始化为全部零,否则,逻辑回归将无法学习有用的决策边界,因为它将无法“打破对称”。

A. 【  】对
B. 【  】不对

答案:

B.【 √ 】不对

note:
Logistic回归没有隐藏层。 如果将权重初始化为零,则Logistic回归中的第一个示例x将输出零,但Logistic回归的导数取决于不是零的输入x(因为没有隐藏层)。 因此,在第二次迭代中,如果x不是常量向量,则权值遵循x的分布并且彼此不同。

第八题

8.你已经为所有隐藏的单位建立了一个使用tanh激活的网络。使用np.random.randn(…, …) * 1000将权重初始化为相对较大的值。会发生什么?

A. 【  】没关系。只要随机初始化权重,梯度下降不受权重大小的影响。

B. 【  】这将导致tanh的输入也非常大,从而导致梯度也变大。因此,你必须将设置得非常小,以防止发散;这将减慢学习速度。

C. 【  】这将导致tanh的输入也非常大,导致单元被“高度激活”。与权重从小值开始相比,加快了学习速度。

D. 【  】这将导致tanh的输入也非常大,从而导致梯度接近于零。因此,优化算法将变得缓慢。

答案:

D.【 √ 】这将导致tanh的输入也很大,因此导致梯度接近于零, 优化算法将因此变得缓慢。

note:tanh对于较大的值变得平坦,这导致其梯度接近于零。 这减慢了优化算法。

第九题

9.考虑以下1个隐层的神经网络:
在这里插入图片描述

A. 【  】 W [ 1 ] W^{[1]} W[1]的形状是(2, 4)

B. 【  】 b [ 1 ] b^{[1]} b[1]的形状是(4, 1)

C. 【  】 W [ 1 ] W^{[1]} W[1]的形状是(4, 2)

D. 【  】 b [ 1 ] b^{[1]} b[1]的形状是(2, 1)

E. 【  】 W [ 2 ] W^{[2]} W[2]的形状是(1, 4)

F. 【  】 b [ 2 ] b^{[2]} b[2]的形状是(4, 1)

G. 【  】 W [ 2 ] W^{[2]} W[2]的形状是(4, 1)

H. 【  】 b [ 2 ] b^{[2]} b[2]的形状是(1, 1)

答案:

B.【 √ 】 b [ 1 ] b^{[1]} b[1]的形状是(4, 1)

C.【 √ 】 W [ 1 ] W^{[1]} W[1]的形状是(4, 2)

E.【 √ 】 W [ 2 ] W^{[2]} W[2]的形状是(1, 4)

H.【 √ 】 b [ 2 ] b^{[2]} b[2]的形状是(1, 1)

第十题

10.在和上一问相同的网络中, Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]的维度是多少?

A. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,1)

B. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(1,4)

C. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,m)

D. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,2)

答案:

C.【 √ 】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,m)

这篇关于sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/153644

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java下载文件中文文件名乱码的解决方案(文件名包含很多%)

《Java下载文件中文文件名乱码的解决方案(文件名包含很多%)》Java下载文件时,文件名中文乱码问题通常是由于编码不正确导致的,使用`URLEncoder.encode(filepath,UTF-8... 目录Java下载文件中文文件名乱码问题一般情况下,大家都是这样为了解决这个问题最终解决总结Java下

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取