约束优化算法(optimtool.constrain)

2023-10-06 02:04

本文主要是介绍约束优化算法(optimtool.constrain),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.4.2

约束优化算法(optimtool.constrain)

import optimtool.constrain as oc
oc.[方法名].[函数名]([目标函数], [参数表], [等式约束表], [不等式约数表], [初始迭代点])
import optimtool.constrain as oc
f, x1, x2 = sp.symbols("f x1 x2")
f = (x1 - 2)**2 + (x2 - 1)**2
c1 = x1 - x2 - 1
c2 = 0.25*x1**2 - x2 - 1

等式约束(equal)

oc.equal.[函数名]([目标函数], [参数表], [等式约束表], [初始迭代点])
方法头解释
penalty_quadratice(funcs: FuncArray, args: FuncArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=10, p: float=2, epsk: float=1e-4, epsilon: float=1e-4, k: int=0) -> OutputType增加二次罚项
lagrange_augmentede(funcs: FuncArray, args: ArgArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, lamk: float=6, sigma: float=10, p: float=2, etak: float=1e-4, epsilon: float=1e-6, k: int=0) -> OutputType增广拉格朗日乘子法
oc.equal.penalty_quadratice(f, (x1, x2), c1, (1, 0.5), verbose=True)
(1, 0.5)	1.25	0
[2. 1.]	4.930380657631324e-32	1
(1.9999999999999998, 1.0)	4.930380657631324e-32	2

在这里插入图片描述

((1.9999999999999998, 1.0), 2)

不等式约束(unequal)

oc.unequal.[函数名]([目标函数], [参数表], [不等式约束表], [初始迭代点])
方法头解释
penalty_quadraticu(funcs: FuncArray, args: ArgArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=10, p: float=0.4, epsk: float=1e-4, epsilon: float=1e-10, k: int=0) -> OutputType增加二次罚项
lagrange_augmentedu(funcs: FuncArray, args: ArgArray, cons: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, muk: float=10, sigma: float=8, alpha: float=0.2, beta: float=0.7, p: float=2, eta: float=1e-1, epsilon: float=1e-4, k: int=0) -> OutputType增广拉格朗日乘子法
oc.unequal.lagrange_augmentedu(f, (x1, x2), c2, (1.5, 0.5), verbose=True)
(1.5, 0.5)	0.5	0
(1.5, 0.5)	0.5	1
[2. 1.]	0.0	2
(2.0, 1.0)	0.0	3
(2.0, 1.0)	0.0	4

((2.0, 1.0), 4)

混合等式约束(mixequal)

oc.mixequal.[函数名]([目标函数], [参数表], [等式约束表], [不等式约束表], [初始迭代点])
方法头解释
penalty_quadraticm(funcs: FuncArray, args: ArgArray, cons_equal: FuncArray, cons_unequal: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=10, p: float=0.6, epsk: float=1e-6, epsilon: float=1e-10, k: int=0) -> OutputType增加二次罚项
penalty_L1(funcs: FuncArray, args: ArgArray, cons_equal: FuncArray, cons_unequal: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, sigma: float=1, p: float=0.6, epsk: float=1e-6, epsilon: float=1e-10, k: int=0) -> OutputTypeL1精确罚函数法
lagrange_augmentedm(funcs: FuncArray, args: ArgArray, cons_equal: FuncArray, cons_unequal: FuncArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, method: str=“newton”, lamk: float=6, muk: float=10, sigma: float=8, alpha: float=0.5, beta: float=0.7, p: float=2, eta: float=1e-3, epsilon: float=1e-4, k: int=0) -> OutputType增广拉格朗日乘子法
oc.mixequal.penalty_L1(f, (x1, x2), c1, c2, (1.5, 0.5), verbose=True)
(1.5, 0.5)	0.5	0
[2.5 0.5]	0.5	1
[1.47826087 1.6       ]	0.6322117202268434	2
[2.18 0.82]	0.06480000000000004	3
[1.892 1.108]	0.023328000000000043	4
[2.0648 0.9352]	0.008398079999999992	5
[1.96112 1.03888]	0.003023308800000004	6
[2.023328 0.976672]	0.001088391167999991	7
[1.9860032 1.0139968]	0.00039182082047999555	8
[2.00839808 0.99160192]	0.000141055495372801	9
[1.99496115 1.00503885]	5.0779978334209926e-05	10
[2.00302331 0.99697669]	1.8280792200315036e-05	11
[1.99818601 1.00181399]	6.581085192114058e-06	12
[2.00108839 0.99891161]	2.369190669160674e-06	13
[1.99934697 1.00065303]	8.529086408979587e-07	14
[2.00039182 0.99960818]	3.0704711072324775e-07	15
[1.99976491 1.00023509]	1.105369598604005e-07	16
[2.00014106 0.99985894]	3.9793305549762975e-08	17
(2.000141055495373, 0.9998589445046272)	3.9793305549762975e-08	18

在这里插入图片描述

((2.000141055495373, 0.9998589445046272), 18)

这篇关于约束优化算法(optimtool.constrain)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152590

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时