交通物流模型 | 基于时空注意力融合网络的城市轨道交通假期短时客流预测

本文主要是介绍交通物流模型 | 基于时空注意力融合网络的城市轨道交通假期短时客流预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


短时轨道交通客流预测对于交通运营管理非常重要。新兴的深度学习模型有效提高了预测精度。然而,大部分现有模型主要针对常规工作日或周末客流进行预测。由于假期客流的突发性和无规律性,仅有一小部分研究专注于假期客流预测。为此,本文提出一个全新的时空注意力融合网络(STAFN)用于城市轨道交通假期短时客流预测。具体而言,该模型由多图注意力网络(MGATN),卷积注意力模块(Conv-Attn)以及特征融合模块构成,其中多图注意力网络主要用于动态提取客流的复杂空间依赖性,卷积注意力模块则用于从全局和局部角度挖掘时间依赖性, 特征融合模块充分融合假期相关社交媒体数据和客流数据,从而进一步学习客流在假期间的演化趋势。最后,模型在南宁市元旦假期期间的地铁AFC刷卡数据集上进行数值实验,实验结果证明了模型优越的预测性能,可以为假期短期客流预测的实际应用提供有力支持。

本文提出时空注意力融合网络模型(STAFN)旨在动态建模客流的复杂时空依赖性,其主要框架图如下图所示。模型主要由以下三个模块构成,分别是多图注意力网络,卷积注意力模块以及特征融合模块。其中,多图注意力网络充分考虑了多种交通网络图以建模复杂的空间依赖性;卷积注意力模块则利用注意力机制从局部和全局的角度建模时间依赖性;为了学习节假日对客流波动的影响,特征融合模块将客流数据与节假日社交媒体数据相融合,可以有效增强假期客流变化的趋势特征。接下来将简单介绍模型的三个模块。

在这里插入图片描述
图卷积网络(GCNs)在捕获图的空间相关性和拓扑信息方面具有强大的能力,近年来越来越多

这篇关于交通物流模型 | 基于时空注意力融合网络的城市轨道交通假期短时客流预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151514

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言