【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配

2023-10-04 06:36

本文主要是介绍【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]

        此代码可以替代内置的images.findImage函数使用,但可能会误匹配,如果是对匹配结果要求比较高的,还是得谨慎使用。


runtime.images.initOpenCvIfNeeded();
importClass(java.util.ArrayList);
importClass(java.util.List);
importClass(java.util.LinkedList);
importClass(org.opencv.imgproc.Imgproc);
importClass(org.opencv.imgcodecs.Imgcodecs);
importClass(org.opencv.core.Core);
importClass(org.opencv.core.Mat);
importClass(org.opencv.core.MatOfDMatch);
importClass(org.opencv.core.MatOfKeyPoint);
importClass(org.opencv.core.MatOfRect);
importClass(org.opencv.core.Size);
importClass(org.opencv.features2d.DescriptorMatcher);
importClass(org.opencv.features2d.Features2d);
importClass(org.opencv.features2d.SIFT);
importClass(org.opencv.features2d.ORB);
importClass(org.opencv.features2d.BRISK);
importClass(org.opencv.features2d.AKAZE);
importClass(org.opencv.features2d.BFMatcher);
importClass(org.opencv.core.MatOfPoint2f);
importClass(org.opencv.calib3d.Calib3d);
importClass(org.opencv.core.CvType);
importClass(org.opencv.core.Point);
importClass(org.opencv.core.Scalar);
importClass(org.opencv.core.MatOfByte);/** 用法示例:* var image1 = captureScreen();* var image2 = images.read('xxxx');* match(image1, image2);*/function match(img1, img2, method) {console.time("匹配耗时");// 指定特征点算法SIFTvar match_alg = null;if(method == 'sift') {match_alg = SIFT.create();}else if(method == 'orb') {match_alg = ORB.create();}else if(method == 'brisk') {match_alg = BRISK.create();}else {match_alg = AKAZE.create();}var bigTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img1)), Imgcodecs.IMREAD_UNCHANGED);var smallTrainImage = Imgcodecs.imdecode(new MatOfByte(images.toBytes(img2)), Imgcodecs.IMREAD_UNCHANGED);// 转灰度图// console.log("转灰度图");var big_trainImage_gray = new Mat(bigTrainImage.rows(), bigTrainImage.cols(), CvType.CV_8UC1);var small_trainImage_gray = new Mat(smallTrainImage.rows(), smallTrainImage.cols(), CvType.CV_8UC1);Imgproc.cvtColor(bigTrainImage, big_trainImage_gray, Imgproc.COLOR_BGR2GRAY);Imgproc.cvtColor(smallTrainImage, small_trainImage_gray, Imgproc.COLOR_BGR2GRAY);// 获取图片的特征点// console.log("detect");var big_keyPoints = new MatOfKeyPoint();var small_keyPoints = new MatOfKeyPoint();match_alg.detect(bigTrainImage, big_keyPoints);match_alg.detect(smallTrainImage, small_keyPoints);// 提取图片的特征点// console.log("compute");var big_trainDescription = new Mat(big_keyPoints.rows(), 128, CvType.CV_32FC1);var small_trainDescription = new Mat(small_keyPoints.rows(), 128, CvType.CV_32FC1);match_alg.compute(big_trainImage_gray, big_keyPoints, big_trainDescription);match_alg.compute(small_trainImage_gray, small_keyPoints, small_trainDescription);// console.log("matcher.train");var matcher = new BFMatcher();matcher.clear();var train_desc_collection = new ArrayList();train_desc_collection.add(big_trainDescription);// vector<Mat>train_desc_collection(1, trainDescription);matcher.add(train_desc_collection);matcher.train();// console.log("knnMatch");var matches = new ArrayList();matcher.knnMatch(small_trainDescription, matches, 2);//对匹配结果进行筛选,依据distance进行筛选// console.log("对匹配结果进行筛选");var goodMatches = new ArrayList();var nndrRatio = 0.8;var len = matches.size();for (var i = 0; i < len; i++) {var matchObj = matches.get(i);var dmatcharray = matchObj.toArray();var m1 = dmatcharray[0];var m2 = dmatcharray[1];if (m1.distance <= m2.distance * nndrRatio) {goodMatches.add(m1);}}var matchesPointCount = goodMatches.size();//当匹配后的特征点大于等于 4 个,则认为模板图在原图中,该值可以自行调整if (matchesPointCount >= 4) {log("模板图在原图匹配成功!");var templateKeyPoints = small_keyPoints;var originalKeyPoints = big_keyPoints;var templateKeyPointList = templateKeyPoints.toList();var originalKeyPointList = originalKeyPoints.toList();var objectPoints = new LinkedList();var scenePoints = new LinkedList();var goodMatchesList = goodMatches;var len = goodMatches.size();for (var i = 0; i < len; i++) {var goodMatch = goodMatches.get(i);objectPoints.addLast(templateKeyPointList.get(goodMatch.queryIdx).pt);scenePoints.addLast(originalKeyPointList.get(goodMatch.trainIdx).pt);}var objMatOfPoint2f = new MatOfPoint2f();objMatOfPoint2f.fromList(objectPoints);var scnMatOfPoint2f = new MatOfPoint2f();scnMatOfPoint2f.fromList(scenePoints);//使用 findHomography 寻找匹配上的关键点的变换var homography = Calib3d.findHomography(objMatOfPoint2f, scnMatOfPoint2f, Calib3d.RANSAC, 3);/*** 透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。*/var templateCorners = new Mat(4, 1, CvType.CV_32FC2);var templateTransformResult = new Mat(4, 1, CvType.CV_32FC2);var templateImage = smallTrainImage;var doubleArr = util.java.array("double", 2);doubleArr[0] = 0;doubleArr[1] = 0;templateCorners.put(0, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = 0;templateCorners.put(1, 0, doubleArr);doubleArr[0] = templateImage.cols();doubleArr[1] = templateImage.rows();templateCorners.put(2, 0, doubleArr);doubleArr[0] = 0;doubleArr[1] = templateImage.rows();templateCorners.put(3, 0, doubleArr);//使用 perspectiveTransform 将模板图进行透视变以矫正图象得到标准图片Core.perspectiveTransform(templateCorners, templateTransformResult, homography);//矩形四个顶点var pointA = templateTransformResult.get(0, 0);var pointB = templateTransformResult.get(1, 0);var pointC = templateTransformResult.get(2, 0);var pointD = templateTransformResult.get(3, 0);var y0 = Math.round(pointA[1])>0?Math.round(pointA[1]):0;var y1 = Math.round(pointC[1])>0?Math.round(pointC[1]):0;var x0 = Math.round(pointD[0])>0?Math.round(pointD[0]):0;var x1 = Math.round(pointB[0])>0?Math.round(pointB[0]):0;console.timeEnd("匹配耗时");return {x: x0, y: y0};} else {console.timeEnd("匹配耗时");log("模板图不在原图中!");return null;}
}

这篇关于【教程】Autojs使用OpenCV进行SIFT/BRISK等算法进行图像匹配的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1483

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min