7. 深度强化学习:智能体的学习与决策

2024-09-08 07:36

本文主要是介绍7. 深度强化学习:智能体的学习与决策,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。

1. 强化学习的基本框架

强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大化累积奖励来完成任务。强化学习的基本框架包括以下几个核心组件:

  • 状态(State):表示智能体在环境中的当前情境。
  • 动作(Action):智能体可以在当前状态下执行的行为。
  • 奖励(Reward):智能体在执行动作后,环境反馈给智能体的信号,用于评估该动作的好坏。
  • 策略(Policy):智能体基于当前状态选择动作的策略,可以是确定性的(确定动作)或随机性的(选择动作的概率分布)。
  • 价值函数(Value Function):用于评估智能体在某一状态下的长期收益。

强化学习的目标是找到一个最优策略,使得智能体在与环境的交互过程中,能够获得最大的累积奖励。

强化学习框架示意图:
[ 环境 ] -- 状态 --> [ 智能体 ] -- 动作 --> [ 环境 ]^                                           ||------------------ 奖励 -------------------|
2. 深度Q网络(DQN)的工作原理

深度Q网络(DQN)是深度强化学习中的经典算法之一,通过引入深度神经网络来近似Q值函数,从而解决了传统Q学习算法在高维状态空间中的局限性。

  • Q学习的基本思想:Q学习通过学习Q值函数 Q ( s , a ) Q(s, a) Q(s,a),来估计在状态 s s s下执行动作 a a a后,能够获得的累积奖励。智能体在每个状态下选择具有最高Q值的动作,从而获得最大化的累积奖励。

  • DQN的改进:DQN使用深度神经网络来近似Q值函数,克服了传统Q学习在高维状态空间中的计算难题。同时,DQN引入了经验回放和目标网络两项关键技术,稳定了训练过程。

    • 经验回放(Experience Replay):通过将智能体的经验存储在一个回放池中,DQN能够在每个训练步骤中随机抽取小批量样本进行训练,从而打破数据的相关性,提升模型的泛化能力。

    • 目标网络(Target Network):DQN使用一个独立的目标网络来计算目标Q值,定期更新该目标网络的参数,以减少Q值估计的波动,稳定训练过程。

  • DQN的更新公式

y = r + γ max ⁡ a ′ Q ( s ′ , a ′ ; θ − ) y = r + \gamma \max_{a'} Q(s', a'; \theta^{-}) y=r+γamaxQ(s,a;θ)
θ ← θ − α ∇ θ 1 2 ( y − Q ( s , a ; θ ) ) 2 \theta \leftarrow \theta - \alpha \nabla_{\theta} \frac{1}{2} (y - Q(s, a; \theta))^2 θθαθ21(yQ(s,a;θ))2

其中, y y y是目标Q值, γ \gamma γ是折扣因子, θ \theta θ是Q网络的参数, θ − \theta^{-} θ是目标网络的参数。

3. 策略梯度方法与Actor-Critic架构

除了基于Q值的算法,深度强化学习还包括一类基于策略的算法,称为策略梯度方法。这类方法通过直接优化策略来最大化累积奖励,特别适用于连续动作空间的任务。

  • 策略梯度方法:策略梯度方法通过优化策略的参数,使得执行动作 a a a的概率最大化。与Q学习不同,策略梯度方法不需要估计Q值函数,而是直接学习一个策略函数 π ( a ∣ s ; θ ) \pi(a|s; \theta) π(as;θ)

    • **策略梯度

公式**:

∇ θ J ( θ ) = E π θ [ ∇ θ log ⁡ π θ ( a ∣ s ) Q ( s , a ) ] \nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s, a)\right] θJ(θ)=Eπθ[θlogπθ(as)Q(s,a)]

其中, J ( θ ) J(\theta) J(θ)表示累积奖励的期望, π θ ( a ∣ s ) \pi_{\theta}(a|s) πθ(as)表示策略函数, Q ( s , a ) Q(s, a) Q(s,a)表示动作的价值。

  • Actor-Critic架构:Actor-Critic架构结合了策略梯度方法和价值函数方法,通过两个独立的网络来分别表示策略(Actor)和价值(Critic)。Actor负责选择动作,而Critic负责评估动作的好坏,二者协同工作,提高了学习效率。

    • Actor网络:输出策略 π ( a ∣ s ; θ π ) \pi(a|s; \theta_{\pi}) π(as;θπ),决定智能体在每个状态下的动作选择。

    • Critic网络:输出价值函数 V ( s ; θ v ) V(s; \theta_v) V(s;θv)或Q值函数 Q ( s , a ; θ v ) Q(s, a; \theta_v) Q(s,a;θv),评估当前策略的优劣。

Actor-Critic架构示意图:
[ 状态 ] --> Actor (选择动作) --> [ 动作 ]^                              ||------ Critic (评估动作) ------|
4. 深度强化学习的经典案例:AlphaGo、自动驾驶

深度强化学习在诸多实际应用中取得了突破性进展,其中最著名的两个案例是AlphaGo和自动驾驶。

  • AlphaGo:AlphaGo是由DeepMind开发的围棋AI,通过深度强化学习技术,AlphaGo成功击败了多位世界顶级围棋选手。AlphaGo使用了深度神经网络来估计围棋局面,并通过策略网络和价值网络来选择最优策略。

  • 自动驾驶:深度强化学习在自动驾驶中的应用主要体现在车辆的决策和控制上。通过与虚拟环境中的模拟驾驶训练,自动驾驶系统能够学习如何在复杂的交通环境中作出最优决策,如避让行人、保持车道、变道超车等。

AlphaGo的基本架构:

AlphaGo使用了两个深度神经网络:一个策略网络负责选择下棋的动作,另一个价值网络负责评估棋盘局势,并预测当前局势的胜率。

总结

深度强化学习通过智能体与环境的交互,学习最优的决策策略,为自动驾驶、游戏AI、机器人控制等领域带来了革命性的进展。经典算法如DQN和策略梯度方法,以及创新架构如Actor-Critic,为深度强化学习的成功奠定了基础。随着技术的不断进步,深度强化学习将继续在更多领域中展现其强大的应用潜力,推动人工智能的发展迈向新的高度。


这篇关于7. 深度强化学习:智能体的学习与决策的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147506

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识