7. 深度强化学习:智能体的学习与决策

2024-09-08 07:36

本文主要是介绍7. 深度强化学习:智能体的学习与决策,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。

1. 强化学习的基本框架

强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大化累积奖励来完成任务。强化学习的基本框架包括以下几个核心组件:

  • 状态(State):表示智能体在环境中的当前情境。
  • 动作(Action):智能体可以在当前状态下执行的行为。
  • 奖励(Reward):智能体在执行动作后,环境反馈给智能体的信号,用于评估该动作的好坏。
  • 策略(Policy):智能体基于当前状态选择动作的策略,可以是确定性的(确定动作)或随机性的(选择动作的概率分布)。
  • 价值函数(Value Function):用于评估智能体在某一状态下的长期收益。

强化学习的目标是找到一个最优策略,使得智能体在与环境的交互过程中,能够获得最大的累积奖励。

强化学习框架示意图:
[ 环境 ] -- 状态 --> [ 智能体 ] -- 动作 --> [ 环境 ]^                                           ||------------------ 奖励 -------------------|
2. 深度Q网络(DQN)的工作原理

深度Q网络(DQN)是深度强化学习中的经典算法之一,通过引入深度神经网络来近似Q值函数,从而解决了传统Q学习算法在高维状态空间中的局限性。

  • Q学习的基本思想:Q学习通过学习Q值函数 Q ( s , a ) Q(s, a) Q(s,a),来估计在状态 s s s下执行动作 a a a后,能够获得的累积奖励。智能体在每个状态下选择具有最高Q值的动作,从而获得最大化的累积奖励。

  • DQN的改进:DQN使用深度神经网络来近似Q值函数,克服了传统Q学习在高维状态空间中的计算难题。同时,DQN引入了经验回放和目标网络两项关键技术,稳定了训练过程。

    • 经验回放(Experience Replay):通过将智能体的经验存储在一个回放池中,DQN能够在每个训练步骤中随机抽取小批量样本进行训练,从而打破数据的相关性,提升模型的泛化能力。

    • 目标网络(Target Network):DQN使用一个独立的目标网络来计算目标Q值,定期更新该目标网络的参数,以减少Q值估计的波动,稳定训练过程。

  • DQN的更新公式

y = r + γ max ⁡ a ′ Q ( s ′ , a ′ ; θ − ) y = r + \gamma \max_{a'} Q(s', a'; \theta^{-}) y=r+γamaxQ(s,a;θ)
θ ← θ − α ∇ θ 1 2 ( y − Q ( s , a ; θ ) ) 2 \theta \leftarrow \theta - \alpha \nabla_{\theta} \frac{1}{2} (y - Q(s, a; \theta))^2 θθαθ21(yQ(s,a;θ))2

其中, y y y是目标Q值, γ \gamma γ是折扣因子, θ \theta θ是Q网络的参数, θ − \theta^{-} θ是目标网络的参数。

3. 策略梯度方法与Actor-Critic架构

除了基于Q值的算法,深度强化学习还包括一类基于策略的算法,称为策略梯度方法。这类方法通过直接优化策略来最大化累积奖励,特别适用于连续动作空间的任务。

  • 策略梯度方法:策略梯度方法通过优化策略的参数,使得执行动作 a a a的概率最大化。与Q学习不同,策略梯度方法不需要估计Q值函数,而是直接学习一个策略函数 π ( a ∣ s ; θ ) \pi(a|s; \theta) π(as;θ)

    • **策略梯度

公式**:

∇ θ J ( θ ) = E π θ [ ∇ θ log ⁡ π θ ( a ∣ s ) Q ( s , a ) ] \nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s, a)\right] θJ(θ)=Eπθ[θlogπθ(as)Q(s,a)]

其中, J ( θ ) J(\theta) J(θ)表示累积奖励的期望, π θ ( a ∣ s ) \pi_{\theta}(a|s) πθ(as)表示策略函数, Q ( s , a ) Q(s, a) Q(s,a)表示动作的价值。

  • Actor-Critic架构:Actor-Critic架构结合了策略梯度方法和价值函数方法,通过两个独立的网络来分别表示策略(Actor)和价值(Critic)。Actor负责选择动作,而Critic负责评估动作的好坏,二者协同工作,提高了学习效率。

    • Actor网络:输出策略 π ( a ∣ s ; θ π ) \pi(a|s; \theta_{\pi}) π(as;θπ),决定智能体在每个状态下的动作选择。

    • Critic网络:输出价值函数 V ( s ; θ v ) V(s; \theta_v) V(s;θv)或Q值函数 Q ( s , a ; θ v ) Q(s, a; \theta_v) Q(s,a;θv),评估当前策略的优劣。

Actor-Critic架构示意图:
[ 状态 ] --> Actor (选择动作) --> [ 动作 ]^                              ||------ Critic (评估动作) ------|
4. 深度强化学习的经典案例:AlphaGo、自动驾驶

深度强化学习在诸多实际应用中取得了突破性进展,其中最著名的两个案例是AlphaGo和自动驾驶。

  • AlphaGo:AlphaGo是由DeepMind开发的围棋AI,通过深度强化学习技术,AlphaGo成功击败了多位世界顶级围棋选手。AlphaGo使用了深度神经网络来估计围棋局面,并通过策略网络和价值网络来选择最优策略。

  • 自动驾驶:深度强化学习在自动驾驶中的应用主要体现在车辆的决策和控制上。通过与虚拟环境中的模拟驾驶训练,自动驾驶系统能够学习如何在复杂的交通环境中作出最优决策,如避让行人、保持车道、变道超车等。

AlphaGo的基本架构:

AlphaGo使用了两个深度神经网络:一个策略网络负责选择下棋的动作,另一个价值网络负责评估棋盘局势,并预测当前局势的胜率。

总结

深度强化学习通过智能体与环境的交互,学习最优的决策策略,为自动驾驶、游戏AI、机器人控制等领域带来了革命性的进展。经典算法如DQN和策略梯度方法,以及创新架构如Actor-Critic,为深度强化学习的成功奠定了基础。随着技术的不断进步,深度强化学习将继续在更多领域中展现其强大的应用潜力,推动人工智能的发展迈向新的高度。


这篇关于7. 深度强化学习:智能体的学习与决策的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147506

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点