读懂《机器学习实战》代码—K-近邻算法

2024-09-08 05:32

本文主要是介绍读懂《机器学习实战》代码—K-近邻算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,K近邻算法概念

K近邻算法即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。KNN 算法是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。

K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素:
1,K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。,
2,该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别
3,距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。
二,K-近邻算法例子

假定有数据集

group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])lables = ['A','A','B','B']

算法步骤:

(1)计算已知类别数据集中的点与当前点之间的距离

(2)按照距离递增次序排序

(3)选取与当前点距离最小的K个点

(4)确定前K个点所在类别出现的频率

(5)返回前K个点出现频率最高的类别作为当前点的预测分类

程序理解:

from numpy import *
from matplotlib import *
import operatordef creatDataset():group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])lables = ['A','A','B','B']return group,lables#inX为用于分类的输入向量
#dataSet为输入的训练样本集
#lables为标签向量
#参数k表示用于选择最近邻居的数目
def classify0(inX,dataSet,lables,k):#array的shape函数返回指定维度的大小,如dataset为n*m的矩阵,#则dataset.shape[0]返回n,dataset.shape[1]返回m,dataset.shape返回n,m    dataSetSize = dataSet.shape[0]#tile函数简单的理解,它的功能是重复某个数组。比如tile(A,n),功能是将数组A重复n次,构成一个新的数组#所以此处tile(inX,(dataSetSize,1))的作用是将inX重复复制dataSetSize次,以便与训练样本集的样本个数一致#减去dataSet就是求出其差值,所以diffMat为一个差值矩阵diffMat = tile(inX,(dataSetSize,1))- dataSet#以下三行代码执行的是欧式距离的计算sqDiffMat = diffMat**2#平时用的sum应该是默认的axis=0,就是普通的相加,而当加入axis=1以后就是将一个矩阵的每一行向量相加,axis用于控制是行相加还是列相加sqDistances = sqDiffMat.sum(axis=1)distance = sqDistances**0.5#相关性的排序sortedDistance = distance.argsort()#<span style="text-indent: 28px;">确定前K个点所在类别出现的频率</span>classCount= {}for i in range(k):voteLable = lables[sortedDistance[i]]#dict.get(key, default=None)key 为字典中要查找的键,default如果指定键的值不存在时,返回该默认值值。此句代码用于统计标签出现的次数classCount[voteLable] = classCount.get(voteLable,0)+1#sorted函数参数解释,sorted(iterable, cmp=None, key=None, reverse=False)#iterable:是可迭代类型;#cmp:用于比较的函数,比较什么由key决定;#key:用列表元素的某个属性或函数进行作为关键字,有默认值,迭代集合中的一项;#reverse:排序规则. reverse = True  降序 或者 reverse = False 升序,有默认值。#返回值:是一个经过排序的可迭代类型,与iterable一样。#######operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号)######sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)#返回最符合的标签return sortedClassCount[0][0]group,lables=creatDataset()
#画出点的分布
pyplot.plot(group[:,0],group[:,1],'ro',label="point")
pyplot.ylim(-0.2,1.2)
pyplot.xlim(-0.2,1.2)#测试[0,0]所属类别
print classify0([0,0],group,lables,3)


测试可得[0,0]属于B类


更多numpy的用法:

numpy教程: http://blog.csdn.net/u013457382/article/details/50828646

这篇关于读懂《机器学习实战》代码—K-近邻算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147254

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2