BERN2(生物医学领域)命名实体识别与命名规范化工具

2024-09-08 05:04

本文主要是介绍BERN2(生物医学领域)命名实体识别与命名规范化工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BERN2: an advanced neural biomedical named entity recognition and normalization tool

《Bioinformatics》2022

1 摘要

NER和NEN:在生物医学自然语言处理中,NER和NEN是关键任务,它们使得从生物医学文献中自动提取实体(如疾病和药物)成为可能。

BERN2:BERN2是一个工具,它通过使用多任务NER模型和基于神经网络的NEN模型,提高了之前基于神经网络的NER工具的速度和准确性。

2 引言

生物医学文本挖掘的重要性:随着生物医学文本量的不断增长,NER和NEN工具变得越来越重要,它们可以自动注释文本中的实体,并将它们链接到唯一的概念ID(CUIs)。

3 BERN2工具介绍

支持的实体类型:BERN2支持九种生物医学实体类型,包括基因/蛋白质疾病药物/化学物质物种突变细胞系细胞类型DNARNA

性能提升:BERN2通过使用单一的多任务NER模型和结合规则和神经网络的NEN模型,显著减少了注释时间并提高了实体规范化的质量。

4 材料与方法

4.1 多任务命名实体识别 (Multi-task Named Entity Recognition)

  • 模型结构:BERN2的多任务NER模型由一个共享的骨干模型和为每种实体类型设置的特定任务层组成。
  • 骨干模型:使用Bio-LM,一个先进的预训练生物医学语言模型。
  • 任务特定层:每个任务特定层由两层MLP(多层感知机)和ReLU激活函数组成,输出每个标记是否是命名实体的开始、内部或外部(BIO)的概率。
  • 训练数据集:合并了五种实体类型的五个训练集,包括BC2GM、NCBI-disease、BC4CHEMD、Linnaeus和JNLPBA。
  • 推理过程:输入文本后,NER模型并行输出所有任务特定层的预测。

4.2 混合命名实体规范化 (Hybrid Named Entity Normalization)

  • 规则基础NEN模型:传统方法,无法处理所有形态变化。
  • BioSyn:基于神经网络的生物医学NEN模型,利用实体的向量表示来覆盖这些变化。
  • 工作流程:先(1)后(2),流水线。
  • 混合NEN模型的应用:用于三种实体类型(基因/蛋白质、疾病和药物/化学物质),其中BioSyn已进行微调。

5 结果

5.1 命名实体识别 (NER) 性能

  • 评估数据集:包括BC2GM、NCBI-disease、BC4CHEMD、tmVar2、Linnaeus、JNLPBA等。
  • 评估指标:使用F1分数(精确度和召回率的调和平均值)来衡量性能。
  • 结果对比:BERN2在大多数实体类型上的性能超过了其他工具,如PTC、HUNFLAIR和BERN。

5.2 命名实体规范化 (NEN) 准确性

  • 评估数据集:BC2GN(基因/蛋白质)和BC5CDR(疾病和药物/化学物质)。
  • 评估指标:使用准确率来衡量性能。
  • 结果对比:BERN2使用混合NEN模型(规则基础 + BioSyn)在规范化准确性方面超过了其他工具,如PTC和BERN。

表:生物医学NER基准测试结果

数据集(类型)

PTC

HUNF

LAIR

BERN

BERN2

BC2GM (基因/蛋白质)

78.8

77.9

83.4

83.7

NCBI-disease (疾病)

81.5

85.4

88.3

88.6

BC4CHEMD (药物/化学物质)

86.7

88.9

91.2

92.8

tmVar2 (突变)

93.7

N/A

93.7

93.7

Linnaeus (物种)

85.6

93.2

88.0

92.7

JNLPBA (细胞系)

N/A

64.9

N/A

78.6

JNLPBA (细胞类型)

N/A

N/A

N/A

80.7

JNLPBA (DNA)

N/A

N/A

N/A

77.8

JNLPBA (RNA)

N/A

N/A

N/A

76.5

表:生物医学NEN基准测试结果

数据集(类型)

PTC

BERN

BioSyn

BERN2

BC2GN (基因/蛋白质)

93.8

93.8

91.3

95.9

BC5CDR (疾病)

88.9

90.7

93.5

93.9

BC5CDR (药物/化学物质)

94.1

92.8

96.6

96.6

这篇关于BERN2(生物医学领域)命名实体识别与命名规范化工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147194

相关文章

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

jvm调优常用命令行工具详解

《jvm调优常用命令行工具详解》:本文主要介绍jvm调优常用命令行工具的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一 jinfo命令查看参数1.1 查看jvm参数二 jstack命令2.1 查看现场堆栈信息三 jstat 实时查看堆内存,gc情况3.1

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Linux命名管道方式

《Linux命名管道方式》:本文主要介绍Linux命名管道方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、命名管道1、与匿名管道的关系2、工作原理3、系统调用接口4、实现两个进程间通信二、可变参数列表总结一、命名管道1、与匿名管道的关系命名管道由mkf

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)

《Java导入、导出excel用法步骤保姆级教程(附封装好的工具类)》:本文主要介绍Java导入、导出excel的相关资料,讲解了使用Java和ApachePOI库将数据导出为Excel文件,包括... 目录前言一、引入Apache POI依赖二、用法&步骤2.1 创建Excel的元素2.3 样式和字体2.

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图