【代码随想录训练营第42期 续Day52打卡 - 图论Part3 - 卡码网 103. 水流问题 104. 建造最大岛屿

本文主要是介绍【代码随想录训练营第42期 续Day52打卡 - 图论Part3 - 卡码网 103. 水流问题 104. 建造最大岛屿,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、做题心得

二、题目与题解

题目一:卡码网 103. 水流问题

题目链接

题解:DFS

题目二:卡码网 104. 建造最大岛屿

题目链接

题解:DFS

 三、小结


一、做题心得

也是成功补上昨天的打卡了。

这里继续图论章节,还是选择使用 DFS 来解决这类搜索问题(单纯因为我更熟悉 DFS 一点),今天补卡的是水流问题和岛屿问题。个人感觉这一章节题对于刚入门图论还是挺有难度的,我们需要搞清楚 DFS 函数的作用,以及具体的代码书写,然后才是解题思路和优化的问题,毕竟这类题 DFS 函数部分的实现代码变化不大。

直接开始今天的内容。

二、题目与题解

题目一:卡码网 103. 水流问题

题目链接

103. 水流问题 (kamacoder.com)

题目描述

现有一个 N × M 的矩阵,每个单元格包含一个数值,这个数值代表该位置的相对高度。矩阵的左边界和上边界被认为是第一组边界,而矩阵的右边界和下边界被视为第二组边界。

矩阵模拟了一个地形,当雨水落在上面时,水会根据地形的倾斜向低处流动,但只能从较高或等高的地点流向较低或等高并且相邻(上下左右方向)的地点。我们的目标是确定那些单元格,从这些单元格出发的水可以达到第一组边界和第二组边界。

输入描述

第一行包含两个整数 N 和 M,分别表示矩阵的行数和列数。 

后续 N 行,每行包含 M 个整数,表示矩阵中的每个单元格的高度。

输出描述

输出共有多行,每行输出两个整数,用一个空格隔开,表示可达第一组边界和第二组边界的单元格的坐标,输出顺序任意。

输入示例

5 5
1 3 1 2 4
1 2 1 3 2
2 4 7 2 1
4 5 6 1 1
1 4 1 2 1

输出示例

0 4
1 3
2 2
3 0
3 1
3 2
4 0
4 1

提示信息

图中的蓝色方块上的雨水既能流向第一组边界,也能流向第二组边界。所以最终答案为所有蓝色方块的坐标。 

数据范围:

1 <= M, N <= 100。

题解:DFS

题意:水会根据地形的倾斜向低处流动,但只能从较高或等高的地点流向较低或等高并且相邻(上下左右方向)的地点,目标是确定那些单元格,从这些单元格出发的水可以达到第一组边界和第二组边界。

思路:选择逆向思维从第一组边界上的节点逆流而上,将遍历过的节点都标记上,同样从第二组边界的边上节点逆流而上,将遍历过的节点也标记上。然后两方都标记过的节点就是满足题意的坐标。

思路理清之后这题就不难了,分别从两组边界(4条边:上下左右边缘)开始进行 DFS 遍历并分别标记并记录两组逆向标记的结果,最终题目要求的节点就是两组标记结果的公共节点(都有标记)。

两组逆向标记的结果 -- 注意是 bool 类型对遍历的节点进行标记

第一组边界:firstBorder

第二组边界:secondBorder

其他就跟之前打卡的岛屿问题差不多,这里不做过多解释,代码如下:

#include <bits/stdc++.h>
using namespace std;int n, m;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
void dfs(vector<vector<int>> &grid, vector<vector<bool>> &visited, int curx, int cury)
{if (visited[curx][cury]) // 如果当前节点已经被访问过,直接返回return;visited[curx][cury] = true; // 标记当前节点为已访问for (int i = 0; i < 4; i++){int nextx = curx + dx[i];int nexty = cury + dy[i];if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m)continue;if (grid[curx][cury] > grid[nextx][nexty]) // 注意:我们是逆向从低向高遍历 -- 那么从高到低(包括相等)情况直接跳过continue;dfs(grid, visited, nextx, nexty);}return;
}
int main()
{std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cin >> n >> m;vector<vector<int>> grid(n, vector<int>(m, 0));for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){cin >> grid[i][j];}}// 标记从第一组边界上的节点出发,可以遍历的节点vector<vector<bool>> firstBorder(n, vector<bool>(m, false));// 标记从第二组边界上的节点出发,可以遍历的节点vector<vector<bool>> secondBorder(n, vector<bool>(m, false));// 从最上和最下行的节点出发,向高处遍历 -- 逆向for (int i = 0; i < n; i++){dfs(grid, firstBorder, i, 0);      // 遍历最左列,接触第一组边界dfs(grid, secondBorder, i, m - 1); // 遍历最右列,接触第二组边界}// 从最左和最右列的节点出发,向高处遍历 -- 逆向for (int j = 0; j < m; j++){dfs(grid, firstBorder, 0, j);      // 遍历最上行,接触第一组边界dfs(grid, secondBorder, n - 1, j); // 遍历最下行,接触第二组边界}for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){if (firstBorder[i][j] && secondBorder[i][j]) // 如果这个节点,从第一组边界和第二组边界出发都遍历过(都有标记),就是结果cout << i << " " << j << endl;}}
}

题目二:卡码网 104. 建造最大岛屿

题目链接

104. 建造最大岛屿 (kamacoder.com)

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,你最多可以将矩阵中的一格水变为一块陆地,在执行了此操作之后,矩阵中最大的岛屿面积是多少。

岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿是被水包围,并且通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示最大的岛屿面积。

输入示例

4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例

6

提示信息

对于上面的案例,有两个位置可将 0 变成 1,使得岛屿的面积最大,即 6。

数据范围:

1 <= M, N <= 50。

题解:DFS

之前打卡的岛屿问题的升级版。

本题的关键在于:如何有效地标记和计算每个岛屿的面积,以及如何找出添加一块陆地后能够连接的最大岛屿面积之和。

几个实现点:

深度优先搜索(DFS):使用 dfs 函数来遍历地图,标记陆地,并计算岛屿面积。dfs 函数通过递归调用,遍历与当前节点相邻的陆地节点,并给每个陆地节点标记一个唯一的岛屿编号。

岛屿面积计算:在 dfs 函数中,通过一个计数器 cnt 来记录当前岛屿的面积。每当访问一个新的陆地节点时,cnt 加1。最后,将岛屿面积记录在哈希表 hash 中,键是岛屿编号,值是岛屿面积。

标记已访问的岛屿:使用一个布尔数组 visited 来标记每个节点是否已经被访问过。在 dfs 函数中,如果当前节点已经被访问过或者遇到海水,则直接返回,避免重复访问。

岛屿编号:岛屿编号从2开始,因为1已经被用作陆地,避免混淆。在 dfs 函数中,给每个陆地节点赋予一个新的岛屿编号。

计算添加陆地后的最大岛屿面积之和:遍历整个地图,对于每个位置,如果当前位置是陆地,则计算添加陆地后的岛屿面积之和。这通过遍历当前位置的四个相邻节点来实现,将相邻岛屿的面积加起来,并记录最大值。

代码如下:

#include <bits/stdc++.h>
using namespace std;int n, m;
int cnt;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
void dfs(vector<vector<int>> &grid, vector<vector<bool>> &visited, int x, int y, int mark) // dfs函数用于标记岛屿,并计算岛屿面积
{if (visited[x][y] || grid[x][y] == 0) // 终止条件:访问过的节点 或者 遇到海水return;visited[x][y] = true; // 标记当前节点为已访问grid[x][y] = mark;    // 给陆地标记新标签cnt++;                // 岛屿面积 +1for (int i = 0; i < 4; i++){int nextx = x + dx[i];int nexty = y + dy[i];if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) // 越界 -- 跳过continue;dfs(grid, visited, nextx, nexty, mark);}
}int main()
{std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> m;vector<vector<int>> grid(n, vector<int>(m, 0));for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){cin >> grid[i][j];}}vector<vector<bool>> visited(n, vector<bool>(m, false)); // 标记访问过的点unordered_map<int, int> hash;                            // 哈希表:用于记录岛屿编号及其面积int mark = 2;                                            // 记录每个岛屿的编号,从2开始,因为1已经被用作陆地,避免异意bool isAllGrid = true;                                   // 标记是否整个地图都是陆地for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){if (grid[i][j] == 0) // 如果遇到海水,则整个地图不是全为陆地isAllGrid = false;if (!visited[i][j] && grid[i][j] == 1) // 如果节点未访问且为陆地{cnt = 0;                        // 重置岛屿面积计数dfs(grid, visited, i, j, mark); // 将与其链接的陆地(该岛屿)都标记上 true,并计算当前岛屿面积hash[mark] = cnt;               // 记录每一个岛屿的面积mark++;                         // 记录下一个岛屿编号}}}if (isAllGrid){cout << n * m << endl; // 如果都是陆地,返回全面积return 0;              // 结束}// 计算添加一块陆地后,连接的岛屿面积之和的最大值int ans = 0;                    // 记录最后结果unordered_set<int> visitedGrid; // 标记访问过的岛屿for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){cnt = 1;             // 初始化岛屿数量,由于当前位置是陆地,所以初始值为1visitedGrid.clear(); // 清空已访问岛屿编号集合,准备计算新的岛屿面积之和if (grid[i][j] == 0){for (int k = 0; k < 4; k++){int neari = i + dx[k]; // 计算相邻坐标int nearj = j + dy[k];if (neari < 0 || neari >= n || nearj < 0 || nearj >= m) // 如果当前位置为海水,则计算添加陆地后的岛屿面积之和continue;if (visitedGrid.count(grid[neari][nearj])) // 如果相邻节点已经被访问过,则跳过 -- 即添加过的岛屿不要重复添加continue; // 把相邻四面的岛屿数量加起来cnt += hash[grid[neari][nearj]];        // 累加相邻岛屿的面积visitedGrid.insert(grid[neari][nearj]); // 标记该岛屿已经添加过}}ans = max(ans, cnt);}}cout << ans << endl;
}

 三、小结

水流问题和建造最大岛屿都是图论章节对于两大基本搜索的应用,我们需要掌握的不仅是 DFS 函数或者 BFS 函数的书写和作用,还有如何去优化处理将问题简单化。

这篇关于【代码随想录训练营第42期 续Day52打卡 - 图论Part3 - 卡码网 103. 水流问题 104. 建造最大岛屿的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146724

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题