KDD 2024 时空数据(Spatio-temporal) ADS论文总结

2024-09-07 14:36

本文主要是介绍KDD 2024 时空数据(Spatio-temporal) ADS论文总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024 KDD( ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 知识发现和数据挖掘会议)在2024年8月25日-29日在西班牙巴塞罗那举行。

本文总结了KDD2024有关时空数据(Spatial-temporal) 的相关论文,如有疏漏,欢迎大家补充。

时空数据Topic:时空(交通)预测, 生成,拥堵预测,定价预测,气象预测,轨迹生成,预测,异常检测,信控优化等

ADS track中有2个session中与时空数据(城市计算)紧密相关:Spatiotemporal Applications 与 Urban Mobility,还有一些其余session中有一些做的时空数据任务。

KDD 2024 时空数据(Spatial-temporal) ADS论文总结
Spatiotemporal Applications

  1. Transportation Marketplace Rate Forecast Using Signature Transform
  2. MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge
  3. Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization
  4. LaDe: The First Comprehensive Last-mile Express Dataset from Industry
  5. UrbanGPT: Spatio-Temporal Large Language Models
  6. Spatio-Temporal Consistency Enhanced Differential Network for Interpretable Indoor Temperature Prediction
  7. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance

Urban Mobility

  1. Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction
  2. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records
  3. DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation
  4. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
  5. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction
  6. PEMBOT: Pareto-Ensembled Multi-task Boosted Trees

其他

  1. FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

Spatiotemporal Applications

1. Transportation Marketplace Rate Forecast Using Signature Transform

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671637

链接https://arxiv.org/abs/2401.04857

作者:Haotian Gu (University of California, Berkeley); Xin Guo (Worldwide Operations Research Science, Amazon.com Inc., University of California, Berkeley); Timothy L. Jacobs (Worldwide Operations Research Science, Amazon.com Inc.); Philip Kaminsky (Worldwide Operations Research Science, Amazon.com Inc., University of California, Berkeley); Xinyu Li (University of California, Berkeley)

关键词:运价预测

2. MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671533

链接https://arxiv.org/abs/2407.01005

作者:Yuning Chen (University of California, Merced); Kang Yang (University of California, Merced); Zhiyu An (University of California, Merced); Brady Holder (University of California, Agriculture and Natural Resources); Luke Paloutzian (University of California, Agriculture and Natural Resources); Khaled M. Bali (University of California, Agriculture and Natural Resources); Wan Du (University of California, Merced)

关键词:时序预测,因果学习,模型预测控制

MARLP

3. Diffusion Model-based Mobile Traffic Generation with Open Data for Network Planning and Optimization

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671544

作者:Haoye Chai (Department of Electronic Engineering, BNRist, Tsinghua University); Tao Jiang (Research Center of 6G Mobile Communications, School of Cyber Science and Engineering, Huazhong University of Science and Technology); Li Yu (Chinamobile Research Institute)

关键词:交通数据生成,扩散模型,卫星图像

OpenDiff

4. LaDe: The First Comprehensive Last-mile Express Dataset from Industry

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671548

链接https://arxiv.org/abs/2306.10675

代码https://github.com/wenhaomin/LaDe

作者:Lixia Wu (Cainiao Network); Haomin Wen (School of Computer and Information Technology, Beijing Jiaotong University, Cainiao Network); Haoyuan Hu (Cainiao Network); Xiaowei Mao (School of Computer and Information Technology, Beijing Jiaotong University, Cainiao Network); Yutong Xia (National University of Singapore); Ergang Shan (Cainiao Network); Jianbin Zheng (Artificial Intelligence Department, Cainiao Network); Junhong Lou (Cainiao Network); Yuxuan Liang (Hong Kong University of Science and Technology (Guangzhou)); Liuqing Yang (Hong Kong University of Science and Technology (Guangzhou)); Roger Zimmermann (National University of Singapore); Youfang Lin (School of Computer and Information Technology, Beijing Jiaotong Univercity); Huaiyu Wan (School of Computer and Information Technology, Beijing Jiaotong University)

关键词:物流数据集,最后一公里配送

LaDe

5. UrbanGPT: Spatio-Temporal Large Language Models

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671578

链接https://arxiv.org/abs/2403.00813

代码https://github.com/HKUDS/UrbanGPT

作者:Zhonghang Li (South China University of Technology, The University of Hong Kong); Lianghao Xia (The University of Hong Kong); Jiabin Tang (The University of Hong Kong); Yong Xu (South China University of Technology); Lei Shi (Baidu Inc.); Long Xia (Baidu Inc.); Dawei Yin (Baidu Inc.); Chao Huang (The University of Hong Kong)

关键词:交通预测,大模型

备注:没有部署的ADS

UrbanGPT

6. Spatio-Temporal Consistency Enhanced Differential Network for Interpretable Indoor Temperature Prediction

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671608

作者:Dekang Qi (Southwest Jiaotong University, JD iCity, JD Technology); Xiuwen Yi (JD iCity, JD Technology, JD Intelligent Cities Research); Chengjie Guo (Xidian University); Yanyong Huang (Southwestern University of Finance and Economics); Junbo Zhang (JD iCity, JD Technology, JD Intelligent Cities Research); Tianrui Li (Southwest Jiaotong University); Yu Zheng (JD iCity, JD Technology, JD Intelligent Cities Research)

关键词:室内温度预测,可解释性预测,时空一致性

CONST

7. Weather Knows What Will Occur: Urban Public Nuisance Events Prediction and Control with Meteorological Assistance

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671639

作者:Yi Xie (Fudan University); Tianyu Qiu (Fudan University); Yun Xiong (Fudan University); Xiuqi Huang (Shanghai Jiaotong University); Xiaofeng Gao (Shanghai Jiao Tong University); Chao Chen (Sorbonne Université – Faculté des Sciences (Paris VI)); Qiang Wang (Shanghai Center for Meteorological Disaster Prevention Technology); Haihong Li (Shanghai Center for Meteorological Disaster Prevention Technology)

关键词:气象辅助的城市事件预测

ST-T3

Urban Mobility

8. Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction

链接https://arxiv.org/abs/2406.12923

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671507

作者:Wenzhao Jiang (The Hong Kong University of Science and Technology (Guangzhou)); Jindong Han (The Hong Kong University of Science and Technology); Hao Liu (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology); Tao Tao (Didichuxing Co. Ltd); Naiqiang Tan (Didichuxing Co. Ltd); Hui Xiong (The Hong Kong University of Science and Technology (Guangzhou), The Hong Kong University of Science and Technology)

关键词:拥堵预测,混合专家系统

CP-MoE

9. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671558

作者:Dongen Wu (Zhejiang University); Ziquan Fang (Zhejiang University); Qichen Sun (Zhejiang University); Lu Chen (Zhejiang University); Haiyang Hu (Zhejiang University); Fei Wang (Zhejiang University); Yunjun Gao (Zhejiang University)

关键词:轨迹恢复

10. DuMapNet: An End-to-End Vectorization System for City-Scale Lane-Level Map Generation

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671579

链接https://arxiv.org/abs/2406.14255

代码https://github.com/XiyanLiu/DuMapNet

作者:Deguo Xia (Tsinghua University, Baidu Inc.); Weiming Zhang (Baidu Inc.); Xiyan Liu (Baidu Inc.); Wei Zhang (Baidu Inc.); Chenting Gong (Baidu Inc.); Jizhou Huang (Baidu Inc.); Mengmeng Yang (Tsinghua University); Diange Yang (Tsinghua University)

关键词:城市车道级别地图生成

DuMapNet

11. An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671606

链接https://arxiv.org/abs/2408.07327

作者:Taeyoung Yun (KAIST); Kanghoon Lee (KAIST); Sujin Yun (KAIST); Ilmyung Kim (Korea Telecom); Won-Woo Jung (Korea Telecom); Min-Cheol Kwon (Korea Telecom); Kyujin Choi (Korea Telecom); Yoohyeon Lee (Korea Telecom); Jinkyoo Park (KAIST)

关键词:交通灯,元学习,黑盒优化

12. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction

链接https://zhouzimu.github.io/paper/kdd24-yang.pdf

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671613

代码https://github.com/LarryHawkingYoung/KDD2024_FedGTP

作者:Linghua Yang (SKLCCSE Lab, Beihang University); Wantong Chen (SKLCCSE Lab, Beihang University); Xiaoxi He (Faculty of Science and Technology, University of Macau); Shuyue Wei (SKLCCSE Lab, Beihang University); Yi Xu (SKLCCSE Lab, Institute of Artificial Intelligence, Beihang University); Zimu Zhou (School of Data Science, City University of Hong Kong); Yongxin Tong (SKLCCSE Lab, Beihang University)

关键词:交通预测,联邦学习

image-20240821172213246

13. PEMBOT: Pareto-Ensembled Multi-task Boosted Trees

链接https://www.amazon.science/publications/pembot-pareto-ensembled-multi-task-boosted-trees

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671619

作者:Gokul Swamy (International Machine Learning, Amazon); Anoop Saladi (International Machine Learning, Amazon); Arunita Das (International Machine Learning, Amazon); Shobhit Niranjan (International Machine Learning, Amazon)

关键词:帕累托最优,多任务

其他

14. FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework for Robust Solar Power Forecasting

链接https://arxiv.org/abs/2402.05823

ACM链接https://dl.acm.org/doi/abs/10.1145/3637528.3671509

作者:Ziqing Ma (DAMO Academy, Alibaba Group); Wenwei Wang (DAMO Academy, Alibaba Group); Tian Zhou (DAMO Academy, Alibaba Group); Chao Chen (DAMO Academy, Central South University); Bingqing Peng (DAMO Academy, Alibaba Group); Liang Sun (DAMO Academy, Alibaba Group); Rong Jin (DAMO Academy, Alibaba Group)

关键词:太阳能预测,模态聚合,向量量化,零样本

FusionSF

相关链接

; Bingqing Peng (DAMO Academy, Alibaba Group); Liang Sun (DAMO Academy, Alibaba Group); Rong Jin (DAMO Academy, Alibaba Group)

关键词:太阳能预测,模态聚合,向量量化,零样本

[外链图片转存中…(img-n0idp4l1-1725679952235)]

相关链接

KDD 2024 Applied Data Science Paperhttps://kdd2024.kdd.org/applied-data-science-track-papers/

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

这篇关于KDD 2024 时空数据(Spatio-temporal) ADS论文总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145326

相关文章

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,