Redis 缓存深度解析:穿透、击穿、雪崩与预热的全面解读

2024-09-07 13:36

本文主要是介绍Redis 缓存深度解析:穿透、击穿、雪崩与预热的全面解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis 缓存深度解析:穿透、击穿、雪崩与预热的全面解读

  • 一 . 什么是缓存 ?
  • 二 . 使用 Redis 作为缓存
  • 三 . 缓存的更新策略
    • 3.1 定期生成
    • 3.2 实时生成
  • 四 . 缓存预热、缓存穿透、缓存雪崩、缓存击穿
    • 4.1 缓存预热
    • 4.2 缓存穿透
    • 4.3 缓存雪崩
    • 4.4 缓存击穿

Hello , 大家好 , 这个专栏给大家带来的是 Redis 系列 ! 本篇文章给大家讲解的是 Redis 的缓存. 在 Redis 缓存系统中 , 缓存穿透、缓存击穿、缓存雪崩和缓存预热是常见的问题 , 它们对系统的性能和稳定性有着重要的影响 . 而缓存穿透、缓存击穿、缓存雪崩和缓存预热又是面试常考问题 , 所以大家一定要仔细认真的阅读 !

在这里插入图片描述
本专栏旨在为初学者提供一个全面的 Redis 学习路径,从基础概念到实际应用,帮助读者快速掌握 Redis 的使用和管理技巧。通过本专栏的学习,能够构建坚实的 Redis 知识基础,并能够在实际学习以及工作中灵活运用 Redis 解决问题 .
专栏地址 : Redis 入门实践

一 . 什么是缓存 ?

Redis 最主要的用途主要有三个方面 :

  1. 存储数据 (内存型数据库)
  2. 缓存 (最常用的场景)
  3. 消息队列 (使用比较少)

缓存的作用就是让我们能够更快地获取到数据 , 一般来说速度快的设备可以给速度慢的设备去做缓存 .

对于硬件的访问速度来说 , 通常情况下是这样的 : CPU 寄存器 > 内存 > 硬盘 > 网络

比较常见的是使用内存来去作为硬盘的缓存 (Redis) , 甚至我们也可以使用硬盘来去作为网络的缓存

使用硬盘来去作为网络的缓存这种场景也是存在的 , 比如 : 浏览器的缓存 , 浏览器通过 HTTP/HTTPS 从服务器上获取到数据 (HTML / CSS / JS / 图片 / 视频 / 音频 / 字体 …) 并且进行展示 , 那像这些体积大而且变化不频繁的数据就可以保存到浏览器本地 , 这就是使用硬盘来去给网络做缓存 .

二 . 使用 Redis 作为缓存

在一个网站中 , 我们通常会使用 Redis 来去作为关系型数据库 (MySQL) 的缓存

为什么一般来说关系型数据库性能都不高 ?

  1. 关系型数据库把数据存储到硬盘上 , 但是硬盘的 IO 速度并不快 , 尤其是随机访问
  2. 如果查询不能命中索引 , 就需要进行表的整个遍历 , 这样就会大大增加硬盘的 IO 次数
  3. 关系型数据库对于 SQL 的执行会做一系列的解析、校验、优化工作
  4. 一些复杂查询 (比如 : 笛卡尔积操作) 效率也会降低

由于关系型数据库效率一般比较低 , 所以能够承担的并发量有限 . 一旦请求数量变多 , 数据库的压力就会变大 , 甚至严重到宕机 .

那如何提高 MySQL 能够承担的并发量呢 ?

  1. 开源 : 引入更多的机器 , 构成数据库集群
  2. 节流 : 引入缓存就是一种节流的方案 , 把一些频繁读取的热点数据保存到缓存中 , 后续查询数据 , 如果缓存中存在就直接返回

三 . 缓存的更新策略

如何知道 Redis 中应该存储哪些数据呢 ? 也就是如何知道哪些数据属于热点数据呢 ?

那我们需要先了解一下缓存的更新策略

3.1 定期生成

首先我们会把访问的数据以日志的形式记录下来 .

通过日志 , 就可以把访问的数据记录下来 , 然后针对这些日志进行统计 , 按照一段时间内数据出现的频率进行降序排序 , 然后排名靠前的数据就可以认为是热点数据 .

那这个热点数据 , 就可以根据当前的统计维度 (每 天/周/月) 来定期更新 , 我们可以写一套离线的流程 (比如使用 Shell / Python … 来去写一些脚本代码) 来进行定时任务的触发 .

这种方式的优点是上述过程实现比较简单 , 过程更可控 , 方便排查问题

那缺点也很明显 , 它的实时性不够 , 如果出现一些突发事件 , 导致一些本来不是热词的内容变成了热词了

比如 : 春晚这个关键词 , 如果定期生成的话 , 假如周期是一个月 , 那年都过完了 , 春晚这个热搜才被统计出来

3.2 实时生成

实时生成的策略是 :

  • 如果在 Redis 中查询到数据 , 就直接返回数据
  • 如果在 Redis 中查询不到数据 , 那就把查询到的结果也写入到 Redis 中

但是这样不停地写 Redis , 就会使 Redis 的内存占用越来越多 , 从而逐渐的达到内存上限

此时如果继续插入数据 , 就会出现一些问题 , 为了解决上述情况 , Redis 就引入了一些内存淘汰策略

  1. 先进先出 (FIFO - First In First Out) : 将缓存中存在时间最久的数据 (最先来的数据) 淘汰掉
  2. 淘汰最久未使用的 (LRU - Least Recently Used) : 记录每个 key 的最近访问时间 , 将最近访问时间最老的 key 淘汰掉
  3. 淘汰访问次数最少的 (LFU - Least Frequently Used) : 记录每个 key 最近一段时间的访问次数 , 把访问次数最少的淘汰掉
  4. 随机淘汰 (Random) : 从所有的 key 中随机抽取某个 key 然后淘汰掉

在 Redis 中有一个配置项 , 就可以设置 Redis 采取哪种内存淘汰策略

  1. LRU 策略 (最近最少使用)
    1. volatile-lru : 从设置了过期时间的 key 中使用 LRU 算法进行淘汰
    2. allkeys-lru : 从所有 key 中使用 LRU 算法进行淘汰
  2. LFU 策略 (最近访问最少)
    1. volatile-lfu : 在已经过期的 key 中使用 LFU 算法进行淘汰
    2. allkeys-lfu : 从所有 key 中使用 LFU 算法进行淘汰
  3. Random (随机淘汰)
    1. volatile-random : 从设置了过期时间的 key 中随机淘汰数据
    2. allkeys-random : 从所有 key 中随机淘汰数据
  4. FIFO (先进先出)
    1. volatile-ttl : 根据过期时间进行淘汰 , 越早过期的越先被淘汰 (相当于 FIFO , 只不过是针对过期的 key)
  5. noeviction 默认策略 : 当内存不⾜以容纳新写⼊数据时 , 新写入操作会报错 .

经过一段时间的动态平衡 , Redis 中的 key 就都逐渐成了热点数据了

四 . 缓存预热、缓存穿透、缓存雪崩、缓存击穿

4.1 缓存预热

我们之前了解过 , 缓存中的数据有两种更新策略

  1. 定期生成 : 这种情况一般不涉及缓存预热问题
  2. 实时生成 : 一般涉及到缓存预热文体

在 Redis 服务器首次接入之后 , Redis 服务器中是没有任何数据的 . 而实时生成的步骤是客户端先查询 Redis 的数据 , 如果没查到就再查一次 MySQL , 然后将查询到的数据也写入到 Redis 中 .

这样的话 , 在服务器刚启动的时候 , 所有的请求都会访问 MySQL , 就会给 MySQL 造成不小压力 . 随着时间的推移 , Redis 上面积累的数据越来越多 , MySQL 的压力就会越来越小 .

所以我们就需要在服务器刚启动的时候进行缓存预热 , 避免服务器刚启动的时候导致 MySQL 压力过大 .

缓存预热的步骤是将定期生成和实时生成相结合 , 通过离线的方式用一些统计途径 , 先把热点数据找到一批然后导入到 Redis 中 . 此时导入的这些热点数据就能够减轻 MySQL 很大压力了 , 随着时间的推移 , 逐渐就可以使用新的热点数据淘汰掉旧的数据了 .

4.2 缓存穿透

缓存穿透指的是查询的某个 key , 他在 Redis 中查询不到 , 在 MySQL 中也查询不到 , 那这个 key 肯定也不会被更新到 Redis 中 .

那如果这样的数据存在很多并且还反复查询 , 一样也会给 MySQL 带来很大压力 .

一般来说 , 出现这样的情况主要有以下几个原因 :

  1. 业务设计不合理 : 比如缺少一些参数校验环节 , 导致非法的 key 也进行查询了
  2. 开发 / 运维误操作 : 不小心把部分数据删除掉了
  3. 黑客恶意攻击

我们通过改进业务 / 加强监控报警这些方法 , 虽然能够解决 , 不过是亡羊补牢 .

一般来说 , 主要采用的方案有以下几种 :

  1. 如果发现某个 key 在 Redis 和 MySQL 中都不存在 , 那将这个 key 写入到 Redis 中 , 然后将 value 设置成一个非法值 (比如 : “”)
  2. 引入布隆过滤器 : 在每次查询 Redis / MySQL 之前 , 都需要先判定一下 key 是否在布隆过滤器中是否存在 (我们会提前将所有的 key 插入到布隆过滤器中) .

布隆过滤器本质上是结合了 hash + bitmap 这两种结构 , 以较小的空间开销和较快的时间速度 , 实现针对 key 是否存在的判定

4.3 缓存雪崩

缓存雪崩指的是由于在短时间内 , Redis 上大规模的 key 失效 , 导致缓存命中率陡然下降 , 导致 MySQL 压力迅速上升 , 甚至宕机 .

产生这种情况主要有以下几种原因 :

  1. Redis 直接挂了 : Redis 宕机 / Redis 集群模式下大量节点宕机
  2. 之前短时间内设置了很多 key 给 Redis , 并且设置的过期时间是相同的 : 给 Redis 设置 key 作为缓存的时候 , 有的时候为了考虑缓存的时效性 , 就会设置过期时间 , 并且它是和 Redis 的内存淘汰机制是相配合使用的

那解决的原因一般如下 :

  1. 加强监控报警 , 加强 Redis 集群可用性
  2. 不给 key 设置过期时间 , 或者设置过期时间添加随机因子 (防止同一时刻过期)

4.4 缓存击穿

缓存击穿的英文全称指的是 Cache breakdown , 其中 breakdown 更适合翻译成瘫痪

所以缓存击穿我们就可以理解为缓存瘫痪 , 他是缓存雪崩的特殊情况 , 针对热点 key , 突然过期了 , 这样就导致了大量的请求直接访问到数据库上 , 甚至引起数据库宕机 .

它的解决方案主要有以下几点 :

  1. 基于统计的方式发现一些非常热点的 key , 并且设置永不过期 : 这需要服务器结构做出较大的调整 , 专门设置一个方法来去统计
  2. 进行必要的服务降级 : 例如访问数据库的时候使用分布式锁 , 限制服务器同时请求数据库的并发数

服务降级指的就是本身我们服务器的功能有 10 个 , 但是在一些特定情况下适当的关闭一些不重要的功能 , 只保留一些核心的功能 (超级省电模式 , 只保留了电话、短信、相机等核心功能)


文章到这里就结束喽 , 不知道你有没有被缓存预热、缓存穿透、缓存雪崩、缓存击穿绕蒙 , 如果对你有帮助的话 , 还请一键三连 , 你的鼓励是对我最大的认可~
在这里插入图片描述

这篇关于Redis 缓存深度解析:穿透、击穿、雪崩与预热的全面解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145200

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略