Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)

本文主要是介绍Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯受激发射损耗显微镜算法模型:🖊恢复嘈杂二维和三维图像 | 🖊模型架构:恢复上下文信息和超分辨率图像 | 🖊使用嘈杂和高信噪比的图像训练模型 | 🖊准备半合成训练集 | 🖊优化沙邦尼尔损失和边缘损失 | 🖊使用峰值信噪比、归一化均方误差和多尺度结构相似性指数量化结果 | 🎯训练荧光显微镜模型和对抗网络图形转换模型

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python图像归一化

在图像处理中,归一化是改变像素强度值范围的过程。例如,应用包括由于眩光而对比度较差的照片。归一化有时称为对比度拉伸或直方图拉伸。在更一般的数据处理领域(例如数字信号处理),它被称为动态范围扩展。

在各种应用中,动态范围扩展的目的通常是将图像或其他类型的信号带入感官更熟悉或正常的范围,因此称为归一化。通常,其动机是使一组数据、信号或图像的动态范围保持一致,以避免精神分散或疲劳。例如,报纸会努力使一期中的所有图像都具有相似的灰度范围。

归一化对 n 维灰度图像 I : { X ⊆ R n } → { I:\left\{ X \subseteq R ^n\right\} \rightarrow\{ I:{XRn}{ Min, …, Max } \} } 进行变换,强度值在 (Min, Max) 范围内),转换为新图像 I N : { X ⊆ R n } → { I_N:\left\{ X \subseteq R ^n\right\} \rightarrow\{ IN:{XRn}{ newMin, …, newMax } \} },强度值在 (newMin, newMax) 范围内。灰度数字图像的线性归一化根据以下公式进行:
I N = ( I − Min ⁡ ) newMax  − newMin  Max ⁡ − Min  + newMin  I_N=(I-\operatorname{Min}) \frac{\text { newMax }- \text { newMin }}{\operatorname{Max}-\text { Min }}+\text { newMin } IN=(IMin)Max Min  newMax  newMin + newMin 
例如,如果图像的强度范围是 50 到 180,而所需范围是 0 到 255,则该过程需要从每个像素强度中减去 50,使得范围为 0 到 130。然后将每个像素强度乘以 255/130,使得范围为 0 到 255。

归一化也可能是非线性的,当 I I I I N I_N IN 之间不存在线性关系时就会发生这种情况。非线性归一化的一个例子是当归一化遵循 sigmoid 函数时,在这种情况下,归一化图像根据以下公式计算:
I N = ( newMax  − newMin  ) 1 1 + e − I − β α + newMin  I_N=(\text { newMax }- \text { newMin }) \frac{1}{1+e^{-\frac{I-\beta}{\alpha}}}+\text { newMin } IN=( newMax  newMin )1+eαIβ1+ newMin 
其中 α \alpha α 定义输入强度范围的宽度, β \beta β 定义输入强度范围的中心强度。

图像处理软件中的自动归一化通常归一化为图像文件格式中指定的数字系统的完整动态范围。

PyTorch归一化图像

PyTorch 中的标准化是使用 torchvision.transforms.Normalize() 完成的。这用平均值和标准差对张量图像进行归一化


from PIL import Image
import matplotlib.pyplot as plt
import numpy as npimg_path = 'Koa.jpg'
img = Image.open(img_path)img_np = np.array(img)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

从结果,我们发现RGB图像的像素值范围是0到255。

使用 ToTensor() 将 PIL 图像转换为 PyTorch 张量,并绘制该张量图像的像素值。我们定义变换函数将 PIL 图像转换为 PyTorch 张量图像。

import torchvision.transforms as transforms
import matplotlib.pyplot as plttransform = transforms.Compose([transforms.ToTensor()
])img_tr = transform(img)
img_np = np.array(img_tr)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

从结果,我们发现张量图像的像素值范围从0.0到1.0。我们注意到 RBG 和张量图像的像素分布看起来相同,但像素值范围不同。

我们计算图像的平均值和标准差:

img_tr = transform(img)
mean, std = img_tr.mean([1,2]), img_tr.std([1,2])print("mean and std before normalize:")
print("Mean of the image:", mean)
print("Std of the image:", std)
标准化前的均值和标准差: 
图像的均值:tensor([0.4916, 0.4498, 0.4000]) 
图像的标准差:tensor([0.2474, 0.2362, 0.2322])

为了归一化图像,我们在这里使用上面计算的图像平均值和标准差。如果图像与 ImageNet 图像相似,我们也可以使用 ImageNet 数据集的平均值和标准差。ImageNet 的平均值和标准差为:平均值 = [0.485, 0.456, 0.406] 和标准差 = [0.229, 0.224, 0.225]。如果图像与 ImageNet 不相似(如医学图像),则始终建议计算数据集的平均值和标准差并使用它们来归一体图像。

from torchvision import transformstransform_norm = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)
])img_normalized = transform_norm(img)
img_np = np.array(img_normalized)plt.hist(img_np.ravel(), bins=50, density=True)
plt.xlabel("pixel values")
plt.ylabel("relative frequency")
plt.title("distribution of pixels")

我们已经用计算出的平均值和标准差对图像进行了归一化。上面的输出显示了归一化图像的像素值分布。我们可以注意到张量图像(归一化之前)和归一化图像的像素分布之间的差异。

现在可视化标准化图像:

img_normalized = transform_norm(img)
img_normalized = np.array(img_normalized)
img_normalized = img_normalized.transpose(1, 2, 0)plt.imshow(img_normalized)
plt.xticks([])
plt.yticks([])

👉参阅、更新:计算思维 | 亚图跨际

这篇关于Python(TensorFlow和PyTorch)两种显微镜成像重建算法模型(显微镜学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144718

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e