本文主要是介绍scRNA-data中的R值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
愿武艺晴小朋友一定得每天都开心
当我们测序拿得到各个样本中基因的表达值,就可以用基因表达值来表征样本间的相关性
代码如下:
#样本间相似性:R值 相关性 捕获到的基因在两个样本间表达趋势一致性
exp_RNA <- AverageExpression(fasting_memory,
group.by = "Sample",layer = "data") #CPM值来自data图层
exp_RNA <- as.data.frame(exp_RNA)
colnames(exp_RNA) <- c("fed","health","memory_10d","memory_35d","memory_66d")
library(ArchR)
library(viridis)
head(exp_RNA)
df<-exp_RNA[,c(1,5)] #依次计算各个组
head(df)
#为了提高数据质量和准确性,使用两组间表达值都非0的基因用于R值的计算
df<-subset.data.frame(df,df$fed!=0)
df<-subset.data.frame(df,df$memory_66d!=0)
cor(df[,2],df[,1])
library(ggrepel)
df$gene <- rownames(df)
df$slope <- df$memory_66d/df$fed #斜率代表在66d组中跟fed组间的表达差别很大
head(df)
label <- subset.data.frame(df,df$slope>1000)
head(label)
ggPoint(x = df$fed,y = df$memory_66d,size=1,
title = "r=0.41",
colorDensity = TRUE,
continuousSet = "solarExtra",
ylabel = "memory_66d:log2(CPM+1)",
xlabel = "fed:log2(CPM+1)",
xlim = c(0,170),
ylim = c(0,170))+ mytheme+
geom_hline(yintercept = 40, lty = "dashed")+
geom_vline(xintercept = 40, lty = "dashed")
#图的样子:
这篇关于scRNA-data中的R值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!