算法图解(8~10贪心,动态规划,K最近邻算法)

2024-09-07 07:36

本文主要是介绍算法图解(8~10贪心,动态规划,K最近邻算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

贪心算法

在每一步都选择局部最优解,从而期望最终得到全局最优解。

贪心算法并不总能保证全局最优解,因此需要满足以下两个条件:

  1. 贪心选择性质:可以通过局部最优选择构造出全局最优解。
  2. 最优子结构:问题的最优解包含其子问题的最优解。

实例:给定面额的硬币,用最少硬币凑出指定金额

int minCoins(vector<int>& coins, int amount) {int count = 0;for (int i = coins.size() - 1; i >= 0; --i) {count += amount / coins[i];amount %= coins[i];}return count;
}

NP完全问题

NP完全问题(NP-Complete Problem)是计算复杂性理论中的一个重要概念,它代表了一类特别难解决的问题。

P类问题:可以在多项式时间内由确定性算法解决。

NP类问题:这些问题的解可以在多项式时间内通过确定性算法验证,尽管找到解的过程可能非常困难。

以下是一些常见的NP完全问题:

  • 旅行商问题(TSP):给定一组城市和它们之间的距离,找到一条路径,使得旅行商访问每个城市一次且总路程最短。
  • 顶点覆盖问题:在一个图中,选择最小数量的顶点,使得每条边至少有一个端点在这些顶点中。
  • 3-SAT问题:给定一个布尔公式的CNF形式,判断是否存在一个真值赋值使得公式成立。
  • 背包问题:给定一组物品,每个物品有一个价值和重量,选择其中一些物品使得总价值最大并且总重量不超过给定的限制。

解决NP完全问题的常用策略:

由于NP完全问题在一般情况下无法在多项式时间内求解,常用的策略包括:

  • 近似算法:找到一个接近最优解的解。
  • 启发式算法:如贪心算法、局部搜索等,虽然不能保证最优解,但通常能在合理时间内找到一个可行解。
  • 分支定界法:在搜索解空间时,通过剪枝来减少计算量。
  • 动态规划和分治法:在特定情况下,这些方法能有效地解决NP完全问题的某些

动态规划(Dynamic Programming, DP)

将一个复杂的问题分解为更简单的子问题,然后通过求解这些子问题来构建原问题的解。与贪心算法不同,动态规划不仅关注局部最优解,而是通过递归或迭代的方式求解全局最优解。

两个核心性质:最优子结构:重叠子问题

经典问题:

  • 斐波那契数列:F(n)=F(n−1)+F(n−2),
  • 背包问题:定一组物品,每个物品有重量和价值,求如何在不超过背包容量的情况下最大化总价值。
  • 最长公共子序列(LCS):给定两个序列,求它们的最长公共子序列长度。

实例:0/1 背包问题,循环前i个物品开始,容量为j时最大价值

int knapsack(int W, vector<int>& weights, vector<int>& values) {int n = weights.size();vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));for (int i = 1; i <= n; ++i) {for (int w = 0; w <= W; ++w) {if (weights[i - 1] <= w) {//《=当前的最大容量,可以选择添加物品dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]);} else {dp[i][w] = dp[i - 1][w];}}}return dp[n][W];
}

实例LCS:第一个序列前i个字符与第二个序列前j个字符的LCS长度


int longestCommonSubsequence(const string& X, const string& Y) {int m = X.length();int n = Y.length();// 创建一个二维数组 dp[m+1][n+1]vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));// 填充 dp 数组for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {if (X[i - 1] == Y[j - 1]) {//如果当前相等,就可以加入dp[i][j] = dp[i - 1][j - 1] + 1;} else {//否则,取上一次的最大值dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}// 返回 LCS 的长度return dp[m][n];
}

递归 VS DP

递归:

  • 自顶向下:递归从原问题出发,逐步分解成更小的子问题,直到遇到基础情况,然后再返回并组合结果。
  • 重复计算:在没有优化的情况下,递归会重复计算许多相同的子问题。例如,在求解斐波那契数列时,递归会多次计算相同的斐波那契值,导致指数级的时间复杂度。

动态规划:

  • 记忆化递归(自顶向下DP):在递归的基础上添加记忆化(也叫备忘录法),即将每个子问题的结果保存下来,当再次遇到相同子问题时直接返回保存的结果,避免了重复计算。

  • 自底向上DP:动态规划还可以通过自底向上的方式,从最小的子问题开始逐步求解,直到得到原问题的解。这种方式通常使用表格或数组存储中间结果。

K最近邻算法

KNN是一种用于分类(编组)和回归(预测结果)的算法。通过比较样本之间的距离,找到距离目标样本最近的K个邻居,然后根据这些邻居的标签来进行分类。

优点:直观,应用于任意分布的数据,多类别分类问题

缺点:计算复杂度高:对样本的距离计算依赖

实例:用于机器学习领域

// 计算两个点之间的欧几里得距离
double euclideanDistance(vector<double>& point1, vector<double>& point2) {double sum = 0.0;for (int i = 0; i < point1.size(); ++i) {//测试点到所有点的距离和sum += pow(point1[i] - point2[i], 2);}return sqrt(sum);
}// KNN分类
int knnClassify(vector<vector<double>>& trainData, vector<int>& trainLabels, vector<double>& testData, int K) {vector<pair<double, int>> distances;  // 存储距离和对应的标签// 计算测试点到所有训练点的距离for (int i = 0; i < trainData.size(); ++i) {double dist = euclideanDistance(trainData[i], testData);distances.push_back({dist, trainLabels[i]});}// 按距离从小到大排序sort(distances.begin(), distances.end());// 投票决定类别vector<int> voteCount(10, 0);  // 假设标签的范围是0-9for (int i = 0; i < K; ++i) {voteCount[distances[i].second]++;}// 返回票数最多的类别return max_element(voteCount.begin(), voteCount.end()) - voteCount.begin();
}

这篇关于算法图解(8~10贪心,动态规划,K最近邻算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144462

相关文章

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1