算法图解(8~10贪心,动态规划,K最近邻算法)

2024-09-07 07:36

本文主要是介绍算法图解(8~10贪心,动态规划,K最近邻算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

贪心算法

在每一步都选择局部最优解,从而期望最终得到全局最优解。

贪心算法并不总能保证全局最优解,因此需要满足以下两个条件:

  1. 贪心选择性质:可以通过局部最优选择构造出全局最优解。
  2. 最优子结构:问题的最优解包含其子问题的最优解。

实例:给定面额的硬币,用最少硬币凑出指定金额

int minCoins(vector<int>& coins, int amount) {int count = 0;for (int i = coins.size() - 1; i >= 0; --i) {count += amount / coins[i];amount %= coins[i];}return count;
}

NP完全问题

NP完全问题(NP-Complete Problem)是计算复杂性理论中的一个重要概念,它代表了一类特别难解决的问题。

P类问题:可以在多项式时间内由确定性算法解决。

NP类问题:这些问题的解可以在多项式时间内通过确定性算法验证,尽管找到解的过程可能非常困难。

以下是一些常见的NP完全问题:

  • 旅行商问题(TSP):给定一组城市和它们之间的距离,找到一条路径,使得旅行商访问每个城市一次且总路程最短。
  • 顶点覆盖问题:在一个图中,选择最小数量的顶点,使得每条边至少有一个端点在这些顶点中。
  • 3-SAT问题:给定一个布尔公式的CNF形式,判断是否存在一个真值赋值使得公式成立。
  • 背包问题:给定一组物品,每个物品有一个价值和重量,选择其中一些物品使得总价值最大并且总重量不超过给定的限制。

解决NP完全问题的常用策略:

由于NP完全问题在一般情况下无法在多项式时间内求解,常用的策略包括:

  • 近似算法:找到一个接近最优解的解。
  • 启发式算法:如贪心算法、局部搜索等,虽然不能保证最优解,但通常能在合理时间内找到一个可行解。
  • 分支定界法:在搜索解空间时,通过剪枝来减少计算量。
  • 动态规划和分治法:在特定情况下,这些方法能有效地解决NP完全问题的某些

动态规划(Dynamic Programming, DP)

将一个复杂的问题分解为更简单的子问题,然后通过求解这些子问题来构建原问题的解。与贪心算法不同,动态规划不仅关注局部最优解,而是通过递归或迭代的方式求解全局最优解。

两个核心性质:最优子结构:重叠子问题

经典问题:

  • 斐波那契数列:F(n)=F(n−1)+F(n−2),
  • 背包问题:定一组物品,每个物品有重量和价值,求如何在不超过背包容量的情况下最大化总价值。
  • 最长公共子序列(LCS):给定两个序列,求它们的最长公共子序列长度。

实例:0/1 背包问题,循环前i个物品开始,容量为j时最大价值

int knapsack(int W, vector<int>& weights, vector<int>& values) {int n = weights.size();vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));for (int i = 1; i <= n; ++i) {for (int w = 0; w <= W; ++w) {if (weights[i - 1] <= w) {//《=当前的最大容量,可以选择添加物品dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]);} else {dp[i][w] = dp[i - 1][w];}}}return dp[n][W];
}

实例LCS:第一个序列前i个字符与第二个序列前j个字符的LCS长度


int longestCommonSubsequence(const string& X, const string& Y) {int m = X.length();int n = Y.length();// 创建一个二维数组 dp[m+1][n+1]vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));// 填充 dp 数组for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {if (X[i - 1] == Y[j - 1]) {//如果当前相等,就可以加入dp[i][j] = dp[i - 1][j - 1] + 1;} else {//否则,取上一次的最大值dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}// 返回 LCS 的长度return dp[m][n];
}

递归 VS DP

递归:

  • 自顶向下:递归从原问题出发,逐步分解成更小的子问题,直到遇到基础情况,然后再返回并组合结果。
  • 重复计算:在没有优化的情况下,递归会重复计算许多相同的子问题。例如,在求解斐波那契数列时,递归会多次计算相同的斐波那契值,导致指数级的时间复杂度。

动态规划:

  • 记忆化递归(自顶向下DP):在递归的基础上添加记忆化(也叫备忘录法),即将每个子问题的结果保存下来,当再次遇到相同子问题时直接返回保存的结果,避免了重复计算。

  • 自底向上DP:动态规划还可以通过自底向上的方式,从最小的子问题开始逐步求解,直到得到原问题的解。这种方式通常使用表格或数组存储中间结果。

K最近邻算法

KNN是一种用于分类(编组)和回归(预测结果)的算法。通过比较样本之间的距离,找到距离目标样本最近的K个邻居,然后根据这些邻居的标签来进行分类。

优点:直观,应用于任意分布的数据,多类别分类问题

缺点:计算复杂度高:对样本的距离计算依赖

实例:用于机器学习领域

// 计算两个点之间的欧几里得距离
double euclideanDistance(vector<double>& point1, vector<double>& point2) {double sum = 0.0;for (int i = 0; i < point1.size(); ++i) {//测试点到所有点的距离和sum += pow(point1[i] - point2[i], 2);}return sqrt(sum);
}// KNN分类
int knnClassify(vector<vector<double>>& trainData, vector<int>& trainLabels, vector<double>& testData, int K) {vector<pair<double, int>> distances;  // 存储距离和对应的标签// 计算测试点到所有训练点的距离for (int i = 0; i < trainData.size(); ++i) {double dist = euclideanDistance(trainData[i], testData);distances.push_back({dist, trainLabels[i]});}// 按距离从小到大排序sort(distances.begin(), distances.end());// 投票决定类别vector<int> voteCount(10, 0);  // 假设标签的范围是0-9for (int i = 0; i < K; ++i) {voteCount[distances[i].second]++;}// 返回票数最多的类别return max_element(voteCount.begin(), voteCount.end()) - voteCount.begin();
}

这篇关于算法图解(8~10贪心,动态规划,K最近邻算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144462

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math