C++笔记19•数据结构:红黑树(RBTree)•

2024-09-07 03:28

本文主要是介绍C++笔记19•数据结构:红黑树(RBTree)•,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

红黑树

1.简介:

        红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RedBlack。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。

  • 当搜索二叉树退化为单支树时,搜索效率极低,为了使搜索效率高,建立平衡搜索二叉树就需要"平衡树"来解决。上一篇博客介绍了AVL树,这篇博客介绍的红黑树和AVLTree作用是一样的。
  • 如果在一棵原本是平衡的树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化,用AVLTree或RBTree。
  • RBTree相对AVLTree效果略微差一些,但是相比AVLTree实现更简单一些,不需要平衡因子的不断更新,而是用红&黑颜色替代,只用到了左单旋和右单旋(RBTree的双旋是调用左单旋和右单旋),现在的硬件设备运转非常快,CUP的高速运转下RBTree与AVLTree的差别已经显得微不足道。关联式容器map/set的底层就是用RBTree实现的。
  • 性质:
    1. 每个结点不是红色就是黑色
    2. 根节点是黑色的 
    3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 ( 没有连续的红节点)
    4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 
    5. 每个叶子结点都是黑色的 ( 此处的叶子结点指的是空结点)

满足以上性质就可以保证:最长路径中节点的个数不会超过最短路径节点个数的两倍。

总结一下:RBTree(①根是黑的②没有连续的红节点③每条路径有相同数量的黑节点)

举例:

做个比方,假设上面的图,最短路径是:全黑 时间复杂度(log(N))     

                                           最长路径是:一黑一红,时间复杂度(2*log(N)) 

                                           所以最多是2倍。

现在的硬件设备运转非常快,log(N)和2*log(N)对CPU来处理真的很快。比如N=10亿,log(10亿)大概等于30;2*log(10亿)大概等于60;最短路径需要搜索30次,最短路径需要搜索60次,这对CPU来处理真的是不值一提的,所以说不管在最短或者最长路径上搜索数据,都是非常快的。

  •  红黑树是近似平衡,高度控制没有AVL树那么严格,增删查改的性能基本差不多。
  • 红黑树高度可能会高一些,但是它旋转得少一些。实际中红黑树综合而言更优一点,实际中红黑树用得更多。

 2.代码实现

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
#include <string>
#include <assert.h>
using namespace std;//平衡搜索树 RBTree
//1. 每个结点不是红色就是黑色
//2. 根节点是黑色的 
//3. 如果一个节点是红色的,则它的两个孩子结点是黑色的(意思就是红色节点不能连续)
//4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 
//5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)enum Colour
{RED,BLACK,
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;//一定不要写成RBTreeNode*<K>  _left;  这样编译器无法识别RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED)//新插入的节点颜色默认设置为红色,原因是针对红黑树的组建规则,红色限制少,但是根节点必须是黑色。{}
};template<class K, class V>
class RBTree
{typedef struct RBTreeNode<K, V> Node;
public:bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}//找到空了,开始插入cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//对RBTree进行颜色节点排查  检查是否存在连续的红色节点while (parent && parent->_col == RED){Node* grandfater = parent->_parent;assert(grandfater);if (parent == grandfater->_left){Node* uncle = grandfater->_right;//情况一:叔叔节点存在且颜色为红if (uncle && uncle->_col == RED)//叔叔节点存在且颜色为红{//变色:父亲和叔叔变黑,爷爷变红;parent->_col = BLACK;uncle->_col = BLACK;grandfater->_col = RED;//继续向上搜索cur = grandfater;parent = cur->_parent;}//情况二:叔叔节点不存在 或 叔叔节点存在且颜色为黑//(1)如果叔叔不存在,那么cur就是新增节点//(2)如果叔叔存在且颜色为黑,那么cur一定不是新增节点。else{if (cur == parent->_left){//     右单旋//     grandfater//      ///   parent        ->    parent //   /                    /  \// cur                  cur   grandfaterRotateR(grandfater);parent->_col = BLACK;grandfater->_col = RED;//不用再向上搜索}else  //cur == parent->_right{//双旋//     g                  g              //   p        ->        c      ->       c//     c              p              p    gRotateL(parent);RotateR(grandfater);cur->_col = BLACK;grandfater->_col = RED;}break;}}else //parent == grandfater->_right{Node* uncle = grandfater->_left;//情况一:叔叔节点存在且颜色为红if (uncle&& uncle->_col == RED)//叔叔节点存在且颜色为红{//变色:父亲和叔叔变黑,爷爷变红;parent->_col = BLACK;uncle->_col = BLACK;grandfater->_col = RED;//继续向上搜索cur = grandfater;parent = cur->_parent;}//情况二:叔叔节点不存在 或 叔叔节点存在且颜色为黑//(1)如果叔叔不存在,那么cur就是新增节点//(2)如果叔叔存在且颜色为黑,那么cur一定不是新增节点。else{if (cur == parent->_right){//     左单旋//     grandfater//         \//        parent        ->     parent //            \                /     \//             cur        grandfater  cur RotateL(grandfater);parent->_col = BLACK;grandfater->_col = RED;//不用再向上搜索}else  //cur == parent->_left{//双旋//     g                  g              //       p        ->        c      ->       c//     c                     p            g   pRotateR(parent);RotateL(grandfater);cur->_col = BLACK;grandfater->_col = RED;}break;}}}_root->_col = BLACK;return true;}void InOrder(){_InOrder(_root);cout << endl;}void Height(){cout << "最长路径:" << _maxHeight(_root) << endl;cout << "最短路径:" << _minHeight(_root) << endl;}bool IsBalanceTree(){// 检查红黑树几条规则Node* pRoot = _root;// 空树也是红黑树if (nullptr == pRoot)return true;// 检测根节点是否满足情况if (BLACK != pRoot->_col){cout << "违反红黑树性质二:根节点必须为黑色" << endl;return false;}// 获取任意一条路径中黑色节点的个数 -- 比较基准值size_t blackCount = 0;Node* pCur = pRoot;while (pCur){if (BLACK == pCur->_col)blackCount++;pCur = pCur->_left;}// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数size_t k = 0;return _IsValidRBTree(pRoot, k, blackCount);}private:Node* _root=nullptr;void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second<<endl;_InOrder(root->_right);}void RotateL(Node* parent)//左单旋{Node* ppNode = parent->_parent;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;//subR->_parent = nullptr; //不可以只写这一句  如果parent是根 必须要更新_root; 加上 _root = subR;}else{if (parent == ppNode->_left){ppNode->_left = subR;}else  //parent == ppNode->_right{ppNode->_right = subR;}subR->_parent = ppNode;}}void RotateR(Node* parent)//右单旋{Node* ppNode = parent->_parent;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR){subLR->_parent = parent;}subL->_right = parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;//subR->_parent = nullptr; //不可以只写这一句  如果parent是根 必须要更新_root; 加上 _root = subR;}else{if (parent == ppNode->_left){ppNode->_left = subL;}else  //parent == ppNode->_right{ppNode->_right = subL;}subL->_parent = ppNode;}}int _maxHeight(Node* root){if (root == nullptr)return 0;int lh = _maxHeight(root->_left);int rh = _maxHeight(root->_right);return lh > rh ? lh + 1 : rh + 1;}int _minHeight(Node* root){if (root == nullptr)return 0;int lh = _minHeight(root->_left);int rh = _minHeight(root->_right);return lh < rh ? lh + 1 : rh + 1;}bool _IsValidRBTree(Node* pRoot, size_t k, const size_t blackCount){//走到null之后,判断k和black是否相等if (nullptr == pRoot){if (k != blackCount){cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;return false;}return true;}// 统计黑色节点的个数if (BLACK == pRoot->_col)k++;// 检测当前节点与其双亲是否都为红色if (RED == pRoot->_col && pRoot->_parent && pRoot->_parent->_col == RED){cout << "违反性质三:存在连在一起的红色节点" << endl;return false;}return _IsValidRBTree(pRoot->_left, k, blackCount) &&_IsValidRBTree(pRoot->_right, k, blackCount);}
};void TestAVLTree1()
{//int a[] = {10, 1, 2, 3, 4, 5, 6, 7, 8,9 };int a[] = { 40,50,30,29,28,27,0,26,25,24,11,8,7,6,5,4,3,2,1 };RBTree<int, int> t;for (auto e : a){t.insert(make_pair(e, e));}t.InOrder();cout << t.IsBalanceTree() << endl;
}
void TestAVLTree2()
{int a[] = { 30,29,28,27,26,25,24,11,8,7,6,5,4,3,2,1 };RBTree<int, int> t;for (auto e : a){bool res = t.insert(make_pair(e, e));if (res){cout << "Inserted: " << e << endl;}else{cout << "Failed to insert: " << e << endl;}}t.InOrder();cout << t.IsBalanceTree() << endl;}int main()
{TestAVLTree1();//TestAVLTree2();return 0;
}

这篇关于C++笔记19•数据结构:红黑树(RBTree)•的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143927

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提