基于 Python 的 LIF 模型:探索神经元同步与小世界网络

2024-09-07 02:12

本文主要是介绍基于 Python 的 LIF 模型:探索神经元同步与小世界网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在神经科学中,理解神经元之间的同步行为对解释大脑的功能非常重要。而泄漏积分发放(Leaky Integrate-and-Fire, LIF)模型作为一种经典的神经元模型,广泛应用于模拟神经元的膜电位变化以及脉冲发放。本篇博客将带你通过Python代码,模拟一个基于小世界网络的神经元群体,探索不同重连概率 ppp 对神经元同步性的影响。

LIF 模型的基本原理

LIF 模型基于以下膜电位更新公式:

当膜电位 VVV 超过阈值 VthV_{\text{th}}Vth​ 时,神经元会发放脉冲,随后膜电位重置为 VrestV_{\text{rest}}Vrest​。这种发放机制可以用于模拟神经元的基本行为。

代码实现

我们通过 Python 代码实现 LIF 模型,并模拟不同重连概率 ppp 下的神经元群体同步性。以下为代码的主要实现步骤。

1. 神经元类的定义

首先,我们定义了一个 LIFNeuron 类来模拟神经元的行为:

class LIFNeuron:def __init__(self, cm=1000, V_rest=-65):self.soma = h.Section(name='soma')self.soma.L = self.soma.diam = 12.6157  # 固定神经元形状self.cm = cm  # 电容self.V_rest = V_rest  # 静息电位self.V = V_rest  # 初始化膜电位

在初始化过程中,每个神经元被赋予初始的静息电位,并且其膜电位会在后续的模拟过程中动态变化。

2. 模拟突触输入与膜电位更新

接下来,我们计算每个神经元在每个时间步的膜电位变化。膜电位的变化不仅依赖于神经元自身的状态,还受到来自其他神经元的突触输入 IsynI_{\text{syn}}Isyn​ 影响:

def dvdt(v, i_synps, i_ext):return (-(v - V_rest) + i_synps + i_ext) / taufor tStep in range(len(Tt) - 1):for j in range(Nn):v_a1 = V[tStep, j]i_ext = stim_amplitude if stim_start <= T[tStep] <= stim_start + stim_duration else 0i_synps = np.random.normal(100, 200)# 计算Runge-Kutta四阶方法更新膜电位k1 = dt * (dvdt(v_a1, i_synps, i_ext) + noise_strength)k2 = dt * (dvdt(v_a1 + 0.5 * k1, i_synps, i_ext) + noise_strength)k3 = dt * (dvdt(v_a1 + 0.5 * k2, i_synps, i_ext) + noise_strength)k4 = dt * (dvdt(v_a1 + k3, i_synps, i_ext) + noise_strength)v_a2 = v_a1 + (k1 + 2 * k2 + 2 * k3 + k4) / 6if v_a2 >= V_th:spike_train[tStep, j] = 1  # 发放脉冲v_a2 = V_rest  # 重置膜电位V[tStep + 1, j] = v_a2  # 更新下一时间步的膜电位

在这段代码中,我们使用了Runge-Kutta四阶方法(RK4)来更新神经元的膜电位。这种方法相比简单的欧拉方法更为精确,能够更好地模拟神经元的动态行为。

3. 小世界网络的构建与重连概率

为了模拟神经元网络的行为,我们引入了一个基于小世界网络的模型。我们使用 networkx 库构建网络,并设置不同的重连概率 ppp 来模拟神经元之间连接的随机性。

import networkx as nx# 创建小世界网络
Nn = 100  # 神经元数量
p_values = [0, 0.1, 0.3, 0.5, 0.7, 0.9]
G = nx.watts_strogatz_graph(Nn, k=4, p=0.1)  # 构建网络,p为重连概率

随着 ppp 值的增加,网络中神经元之间的连接变得更加随机。这种随机化会影响神经元之间的同步行为。

4. 可视化膜电位与脉冲发放

为了直观展示模拟结果,我们使用 matplotlib 绘制了神经元的膜电位热图和脉冲时序图:

# 绘制膜电位热图
plt.figure(figsize=(12, 8))
plt.imshow(V.T, aspect='auto', cmap='hot', extent=[0, T_final, 0, Nn])
plt.colorbar(label='膜电位 (mV)')
plt.title(f'膜电位热图 (p={p})')
plt.xlabel('时间 (ms)')
plt.ylabel('神经元')
plt.show()# 绘制同步误差图
plt.figure()
plt.plot(p_values, sync_errors, marker='o')
plt.title('不同 p 值下的网络同步误差')
plt.xlabel('重连概率 p')
plt.ylabel('同步误差')
plt.show()

这些图形展示了不同时间步内神经元膜电位的动态变化,以及随着重连概率变化网络同步性的变化。

结果与分析

模拟结果表明,随着重连概率 ppp 的增加,神经元之间的同步误差呈现先下降后上升的趋势。在适中的重连概率下,网络能够达到较高的同步性,而过高的随机性则破坏了这种同步。以下是一些可视化结果的示例:

  • 膜电位热图:展示了神经元膜电位随时间的变化。
  • 同步误差曲线:随着重连概率的增加,同步误差先下降后上升,表明网络的随机化程度直接影响同步性。
结论

通过这次模拟,我们成功探索了基于LIF模型的小世界网络中神经元同步行为。重连概率 ppp 的变化显著影响了网络的同步性,适中的随机性有助于提高同步性。未来的研究可以引入更多复杂的神经元模型或突触机制,进一步揭示神经网络中的复杂动态现象。

这次探索不仅展示了LIF模型的强大之处,也为未来研究神经元网络中的同步现象提供了新的思路。希望通过这篇博客,大家能更好地理解神经科学中的同步现象。

这篇关于基于 Python 的 LIF 模型:探索神经元同步与小世界网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143761

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了