基于 Python 的 LIF 模型:探索神经元同步与小世界网络

2024-09-07 02:12

本文主要是介绍基于 Python 的 LIF 模型:探索神经元同步与小世界网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在神经科学中,理解神经元之间的同步行为对解释大脑的功能非常重要。而泄漏积分发放(Leaky Integrate-and-Fire, LIF)模型作为一种经典的神经元模型,广泛应用于模拟神经元的膜电位变化以及脉冲发放。本篇博客将带你通过Python代码,模拟一个基于小世界网络的神经元群体,探索不同重连概率 ppp 对神经元同步性的影响。

LIF 模型的基本原理

LIF 模型基于以下膜电位更新公式:

当膜电位 VVV 超过阈值 VthV_{\text{th}}Vth​ 时,神经元会发放脉冲,随后膜电位重置为 VrestV_{\text{rest}}Vrest​。这种发放机制可以用于模拟神经元的基本行为。

代码实现

我们通过 Python 代码实现 LIF 模型,并模拟不同重连概率 ppp 下的神经元群体同步性。以下为代码的主要实现步骤。

1. 神经元类的定义

首先,我们定义了一个 LIFNeuron 类来模拟神经元的行为:

class LIFNeuron:def __init__(self, cm=1000, V_rest=-65):self.soma = h.Section(name='soma')self.soma.L = self.soma.diam = 12.6157  # 固定神经元形状self.cm = cm  # 电容self.V_rest = V_rest  # 静息电位self.V = V_rest  # 初始化膜电位

在初始化过程中,每个神经元被赋予初始的静息电位,并且其膜电位会在后续的模拟过程中动态变化。

2. 模拟突触输入与膜电位更新

接下来,我们计算每个神经元在每个时间步的膜电位变化。膜电位的变化不仅依赖于神经元自身的状态,还受到来自其他神经元的突触输入 IsynI_{\text{syn}}Isyn​ 影响:

def dvdt(v, i_synps, i_ext):return (-(v - V_rest) + i_synps + i_ext) / taufor tStep in range(len(Tt) - 1):for j in range(Nn):v_a1 = V[tStep, j]i_ext = stim_amplitude if stim_start <= T[tStep] <= stim_start + stim_duration else 0i_synps = np.random.normal(100, 200)# 计算Runge-Kutta四阶方法更新膜电位k1 = dt * (dvdt(v_a1, i_synps, i_ext) + noise_strength)k2 = dt * (dvdt(v_a1 + 0.5 * k1, i_synps, i_ext) + noise_strength)k3 = dt * (dvdt(v_a1 + 0.5 * k2, i_synps, i_ext) + noise_strength)k4 = dt * (dvdt(v_a1 + k3, i_synps, i_ext) + noise_strength)v_a2 = v_a1 + (k1 + 2 * k2 + 2 * k3 + k4) / 6if v_a2 >= V_th:spike_train[tStep, j] = 1  # 发放脉冲v_a2 = V_rest  # 重置膜电位V[tStep + 1, j] = v_a2  # 更新下一时间步的膜电位

在这段代码中,我们使用了Runge-Kutta四阶方法(RK4)来更新神经元的膜电位。这种方法相比简单的欧拉方法更为精确,能够更好地模拟神经元的动态行为。

3. 小世界网络的构建与重连概率

为了模拟神经元网络的行为,我们引入了一个基于小世界网络的模型。我们使用 networkx 库构建网络,并设置不同的重连概率 ppp 来模拟神经元之间连接的随机性。

import networkx as nx# 创建小世界网络
Nn = 100  # 神经元数量
p_values = [0, 0.1, 0.3, 0.5, 0.7, 0.9]
G = nx.watts_strogatz_graph(Nn, k=4, p=0.1)  # 构建网络,p为重连概率

随着 ppp 值的增加,网络中神经元之间的连接变得更加随机。这种随机化会影响神经元之间的同步行为。

4. 可视化膜电位与脉冲发放

为了直观展示模拟结果,我们使用 matplotlib 绘制了神经元的膜电位热图和脉冲时序图:

# 绘制膜电位热图
plt.figure(figsize=(12, 8))
plt.imshow(V.T, aspect='auto', cmap='hot', extent=[0, T_final, 0, Nn])
plt.colorbar(label='膜电位 (mV)')
plt.title(f'膜电位热图 (p={p})')
plt.xlabel('时间 (ms)')
plt.ylabel('神经元')
plt.show()# 绘制同步误差图
plt.figure()
plt.plot(p_values, sync_errors, marker='o')
plt.title('不同 p 值下的网络同步误差')
plt.xlabel('重连概率 p')
plt.ylabel('同步误差')
plt.show()

这些图形展示了不同时间步内神经元膜电位的动态变化,以及随着重连概率变化网络同步性的变化。

结果与分析

模拟结果表明,随着重连概率 ppp 的增加,神经元之间的同步误差呈现先下降后上升的趋势。在适中的重连概率下,网络能够达到较高的同步性,而过高的随机性则破坏了这种同步。以下是一些可视化结果的示例:

  • 膜电位热图:展示了神经元膜电位随时间的变化。
  • 同步误差曲线:随着重连概率的增加,同步误差先下降后上升,表明网络的随机化程度直接影响同步性。
结论

通过这次模拟,我们成功探索了基于LIF模型的小世界网络中神经元同步行为。重连概率 ppp 的变化显著影响了网络的同步性,适中的随机性有助于提高同步性。未来的研究可以引入更多复杂的神经元模型或突触机制,进一步揭示神经网络中的复杂动态现象。

这次探索不仅展示了LIF模型的强大之处,也为未来研究神经元网络中的同步现象提供了新的思路。希望通过这篇博客,大家能更好地理解神经科学中的同步现象。

这篇关于基于 Python 的 LIF 模型:探索神经元同步与小世界网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143761

相关文章

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验