图形API学习工程(10):基础光照

2024-09-06 23:32

本文主要是介绍图形API学习工程(10):基础光照,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工程GIT地址:https://gitee.com/yaksue/yaksue-graphics

目标

在《图形API学习工程(6):创建并使用UniformBuffer》中,UniformBuffer的机制已经配置好,这其实可以让一大批功能得以实现。《图形API学习工程(7):进入3D空间》是其一,其中配置了相机矩阵和投影矩阵,使得能以一个虚拟的“相机”来观察3D世界。本篇的“光照”同样如此,它建立在UniformBuffer的功能上。

本篇的目标是创建一个有一定体积的“立方体”,并让它看起来“受到光照”。

此处概念介绍,可见DirectX11官方SDK中的教程范例【Direct3D11 - Tutorial 6: Lighting】

无光照的效果

为了测试,让“立方体”的所有顶点的颜色都是青色(0.0f, 0.7f, 0.7f, 1.0f):

//作为测试的顶点缓冲数据:
std::vector<RawVertexData> vertices = {	//六个面,颜色都是青色(0.0f, 0.7f, 0.7f, 1.0f){ {-1.0f, 1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, 1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, 1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, 1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, -1.0f, -1.0f},	{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, -1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, -1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, -1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, -1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, -1.0f, -1.0f},	{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, 1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, 1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, -1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, -1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, 1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, 1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, -1.0f, -1.0f},	{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, -1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, 1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, 1.0f, -1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, -1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, -1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {1.0f, 1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },{ {-1.0f, 1.0f, 1.0f},		{0.0f, 0.7f, 0.7f, 1.0f} },
};

效果:
在这里插入图片描述
可以看出,虽然从轮廓可以辨别出它是一个立方体。但这和实际在现实中看到的立方体差别很大。在现实中,一个立方体,就算是纯色的,也能辨认出各个表面,辨认出棱角。
而这主要归功于——光照。由于不同的表面相对的光照方向角度不一样,因此他们受光的程度不同。这很容易想象:“光照方向垂直于平面”时,会比“光照方向平行于平面”时更亮。

法线

为了表示表面朝向,引入法线
(另外,我将颜色这个顶点属性去掉,因为所有顶点都是同一种颜色,因此我选择将值暂时硬编码在shader中)

1. 顶点数据调整

顶点数据类型修改:
在这里插入图片描述
数据:

//作为测试的顶点缓冲数据:
std::vector<RawVertexData> vertices = {	//朝前:{ {-1.0f, 1.0f, -1.0f},		{0.0f, 1.0f, 0.0f} },{ {1.0f, 1.0f, -1.0f},		{0.0f, 1.0f, 0.0f} },{ {1.0f, 1.0f, 1.0f},		{0.0f, 1.0f, 0.0f} },{ {-1.0f, 1.0f, 1.0f},		{0.0f, 1.0f, 0.0f} },//朝后:{ {-1.0f, -1.0f, -1.0f},	{0.0f, -1.0f, 0.0f} },{ {1.0f, -1.0f, -1.0f},		{0.0f, -1.0f, 0.0f} },{ {1.0f, -1.0f, 1.0f},		{0.0f, -1.0f, 0.0f} },{ {-1.0f, -1.0f, 1.0f},		{0.0f, -1.0f, 0.0f} },//朝左:{ {-1.0f, -1.0f, 1.0f},		{-1.0f, 0.0f, 0.0f} },{ {-1.0f, -1.0f, -1.0f},	{-1.0f, 0.0f, 0.0f} },{ {-1.0f, 1.0f, -1.0f},		{-1.0f, 0.0f, 0.0f} },{ {-1.0f, 1.0f, 1.0f},		{-1.0f, 0.0f, 0.0f} },//朝右:{ {1.0f, -1.0f, 1.0f},		{1.0f, 0.0f, 0.0f} },{ {1.0f, -1.0f, -1.0f},		{1.0f, 0.0f, 0.0f} },{ {1.0f, 1.0f, -1.0f},		{1.0f, 0.0f, 0.0f} },{ {1.0f, 1.0f, 1.0f},		{1.0f, 0.0f, 0.0f} },//朝下:{ {-1.0f, -1.0f, -1.0f},	{0.0f, 0.0f, -1.0f} },{ {1.0f, -1.0f, -1.0f},		{0.0f, 0.0f, -1.0f} },{ {1.0f, 1.0f, -1.0f},		{0.0f, 0.0f, -1.0f} },{ {-1.0f, 1.0f, -1.0f},		{0.0f, 0.0f, -1.0f} },//朝上:{ {-1.0f, -1.0f, 1.0f},		{0.0f, 0.0f, 1.0f} },{ {1.0f, -1.0f, 1.0f},		{0.0f, 0.0f, 1.0f} },{ {1.0f, 1.0f, 1.0f},		{0.0f, 0.0f, 1.0f} },{ {-1.0f, 1.0f, 1.0f},		{0.0f, 0.0f, 1.0f} },
};
2. 顶点布局调整

将原先的颜色属性改为法线属性:
D3D11
在这里插入图片描述
D3D12
在这里插入图片描述
Vulkan
在这里插入图片描述
OpenGL
在这里插入图片描述
不过,由于OpenGL在创建顶点数据的时候还需要做些转换。因此也需要处理。

3. 着色器调整

将颜色的输入改为法线。
另外,加一个硬编码的光照方向,作为测试。
glsl版
在这里插入图片描述
hlsl版
在这里插入图片描述

效果

在这里插入图片描述

将光照方向加入UniformBuffer

在上一步骤中,光源方向被硬编码到着色器中,在实际中一般不会这么做。因为着色器中的代码应该只记录逻辑,而光源方向这种会被外部调整的数据,应该作为一个UniformBuffer传入。

将光照方向加入UniformBuffer结构体中:
在这里插入图片描述
当然,着色器中也要配合加入。

另外,由于是在像素着色器中获取这个信息,而之前只是在顶点着色器中,所以设置部分有需要改变:
OpenGL
不需要调整

D3D11
在这里插入图片描述

D3D12
将UniformBuffer的可见从D3D12_SHADER_VISIBILITY_VERTEX改为D3D12_SHADER_VISIBILITY_ALL
然后将之前管线中的flag去掉D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS
在这里插入图片描述
Vulkan
UniformBuffer的flag添加一个VK_SHADER_STAGE_FRAGMENT_BIT
在这里插入图片描述

鼠标控制光源

这里和《图形API学习工程(7):进入3D空间》中的相机类似,只不过将CameraManager又向上抽象为一个MouseArmController,供光源的控制使用。
另外,为了能分开控制相机和光源,我向MouseArmController加入了“激活键”的概念,仅在这个键被按时才有效。

效果:
在这里插入图片描述
同时按住两个“激活键”就可以让光照方向时刻面对着相机
在这里插入图片描述

这篇关于图形API学习工程(10):基础光照的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143421

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.