Flink在大规模状态数据集下的checkpoint调优

2024-09-06 21:48

本文主要是介绍Flink在大规模状态数据集下的checkpoint调优,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天接到一个同学的反馈问题,大概是:
 
Flink程序运行一段时间就会报这个错误,定位好多天都没有定位到。checkpoint时间是5秒,20秒都不行。	Caused by: java.io.IOException: Could not flush and close the file system output stream to hdfs://HDFSaaaa/flink/PointWideTable_OffTest_Test2/1eb66edcfccce6124c3b2d6ae402ec39/chk-355/1005127c-cee3-4099-8b61-aef819d72404 in order to obtain the stream state handle	at org.apache.flink.runtime.state.filesystem.FsCheckpointStreamFactory$FsCheckpointStateOutputStream.closeAndGetHandle(FsCheckpointStreamFactory.java:326)	at org.apache.flink.runtime.state.DefaultOperatorStateBackendSnapshotStrategy$1.callInternal(DefaultOperatorStateBackendSnapshotStrategy.java:179)	at org.apache.flink.runtime.state.DefaultOperatorStateBackendSnapshotStrategy$1.callInternal(DefaultOperatorStateBackendSnapshotStrategy.java:108)	at org.apache.flink.runtime.state.AsyncSnapshotCallable.call(AsyncSnapshotCallable.java:75)	at java.util.concurrent.FutureTask.run(FutureTask.java:266)	at org.apache.flink.runtime.concurrent.FutureUtils.runIfNotDoneAndGet(FutureUtils.java:391)	... 7 more	
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.hdfs.server.namenode.LeaseExpiredException): No lease on /flink/PointWideTable_OffTest_Test2/1eb66edcfccce6124c3b2d6ae402ec39/chk-355/1005127c-cee3-4099-8b61-aef819d72404 (inode 937800469): File does not exist. [Lease.  Holder: DFSClient_NONMAPREDUCE_1949016825_84, pendingcreates: 10]	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkLease(FSNamesystem.java:3432)	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.completeFileInternal(FSNamesystem.java:3520)	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.completeFile(FSNamesystem.java:3487)	at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.complete(NameNodeRpcServer.java:787)	at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.complete(ClientNamenodeProtocolServerSideTranslatorPB.java:537)	at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)	at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616)	at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:982)	at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2049)	at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2045)	at java.security.AccessController.doPrivileged(Native Method)	at javax.security.auth.Subject.doAs(Subject.java:422)	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)	at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2045)	at org.apache.hadoop.ipc.Client.call(Client.java:1476)	at org.apache.hadoop.ipc.Client.call(Client.java:1413)	at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)	at com.sun.proxy.$Proxy17.complete(Unknown Source)	at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.complete(ClientNamenodeProtocolTranslatorPB.java:462)	at sun.reflect.GeneratedMethodAccessor17.invoke(Unknown Source)	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)	at java.lang.reflect.Method.invoke(Method.java:498)	at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)	at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)	at com.sun.proxy.$Proxy18.complete(Unknown Source)	at org.apache.hadoop.hdfs.DFSOutputStream.completeFile(DFSOutputStream.java:2506)	at org.apache.hadoop.hdfs.DFSOutputStream.closeImpl(DFSOutputStream.java:2482)	at org.apache.hadoop.hdfs.DFSOutputStream.close(DFSOutputStream.java:2447)	at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.close(FSDataOutputStream.java:72)	at org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:106)	at org.apache.flink.runtime.fs.hdfs.HadoopDataOutputStream.close(HadoopDataOutputStream.java:52)	at org.apache.flink.core.fs.ClosingFSDataOutputStream.close(ClosingFSDataOutputStream.java:64)	at org.apache.flink.runtime.state.filesystem.FsCheckpointStreamFactory$FsCheckpointStateOutputStream.closeAndGetHandle(FsCheckpointStreamFactory.java:312)
同样在网上搜索,也有同样的问题,比如:
 
任务一开始正常,跑一两天后就会checkpoint超时,收不到Latest Acknowledgement,然后用同样的包重启又可以正常跑几天如此反复,一直找不到原因。	
设置项如下:	final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();	//设置失败后一直重启	env.setRestartStrategy(RestartStrategies.failureRateRestart(3, Time.milliseconds(1000), Time.minutes(5)));	env.disableOperatorChaining(); 	env.enableCheckpointing(1000 * 60 * 15, CheckpointingMode.AT_LEAST_ONCE);	env.getCheckpointConfig().setFailOnCheckpointingErrors(true);	//业务比较复杂设置超时时间1个小时。	env.getCheckpointConfig().setCheckpointTimeout(1000 * 60 * 60);	env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000  * 10);	env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION);
前言 众所周知,Flink内部为了实现它的高可用性,实现了一套强大的checkpoint机制,还能保证作用的Exactly Once的快速恢复。对此,围绕checkpoint过程本身做了很多的工作。在官方文档中,也为用户解释了checkpoint的部分原理以及checkpoint在实际生产中(尤其是大规模状态集下)的checkpoint调优参数。笔者结合官方文档,给大家做个总结,也算是对Flink checkpoint机理的一个学习。


Checkpoint快慢的性能指标 如果说我们想要对flink的checkpoint操作做调优,那么我们首先得有个衡量指标来展现当前checkpoint是否快慢。 在这里,官方提供了以下2个metric指标:


Checkpoint每次开始的时间。 观察每次checkpoint开始的时间是为了检测在每次前后checkpoint中间是否存在空闲时间间隔。 如果存在间隔时间,说明当前checkpoint都在合理时间内完成。


观察数据buffered的量。 这个buffered动作是为了等待其它较慢数据流的stream barriers而设计的。 这个偏向于checkpoint原理化的相关内容了。


但大体上,用户根据第一条就能够监测出应用的checkout快慢了。


相邻Checkpoint的间隔时间设置 我们假设一个使用场景,在极大规模状态数据集下,应用每次的checkpoint时长都超过系统设定的最大时间(也就是checkpoint间隔时长),那么会发生什么样的事情。


答案是应用会一直在做checkpoint,因为当应用发现它刚刚做完一次checkpoint后,又已经到了下次checkpoint的时间了,然后又开始新的checkpoint。 最后就会造成一个很坏的结果: 用户应用本身都没法跑了。


当然了,我们可能会说了,我们设置一下并行checkpoint数,或者说做增量checkpoint,不用每次做全量checkpoint。 每次只checkpoint出对前一次checkpoint内的状态数据的增量改动。 然后恢复的时候做状态改动的重放。


但是这里,我们可以采用一种更加直接有效的方法,设置连续checkpoint的时间间隔。 形象地解释,就是强行在checkpoint间塞入空闲时间,如下图。


640?wx_fmt=bmp 涉及的相关配置设置如下:
 
StreamExecutionEnvironment.getCheckpointConfig().setMinPauseBetweenCheckpoints(milliseconds)
Checkpoint的资源设置 当我们对越多的状态数据集做checkpoint时,需要消耗越多的资源。 因为Flink在checkpoint时是首先在每个task上做数据checkpoint,然后在外部存储中做checkpoint持久化。 在这里的一个优化思路是: 在总状态数据固定的情况下,当每个task平均所checkpoint的数据越少,那么相应地checkpoint的总时间也会变短。 所以我们可以为每个task设置更多的并行度(即分配更多的资源)来加速checkpoint的执行过程。


Checkpoint的task本地性恢复 为了大家未来对checkpoint的优化,我们有必要在runtime级别的checkpoint过程。 首先我们要明白一点,flink的checkpoint不是一个完全在master节点的过程,而是分散在每个task上执行,然后在做汇总持久化。 这些task做的checkpoint数据在后面应用恢复时包括并行度扩增或减少时还能够重新打散分布。


为了快速的状态恢复,每个task会同时写checkpoint数据到本地磁盘和远程分布式存储,也就是说,这是一份双拷贝。 只要task本地的checkpoint数据没有被破坏,系统在应用恢复时会首先加载本地的checkpoint数据,这样就大大减少了远程拉取状态数据的过程。 此过程如下图所示: 640?wx_fmt=png


外部State的存储选择 上小节的方法其实还并没有从本质上解决大规模状态集下checkpoint慢的问题,只是说它降低了这个慢的风险和造成的影响。在这里我们反复强调的是一个大规模状态,我们理理思路,因为规模之大,所以我们才会慢。那如果我们能找到一种更快的存储状态的介质(或者策略),那么这个过程也是能够变快的。


所以在这里,我们可以选择更加高效的外部存储介质来做State的存储(比如RocksDB),而不是仅限于存储于有限的内存空间里,或完全落地到磁盘上。这是我们在State Backend上做的一个选择。


可以使用RocksDB来作为增量checkpoint的存储,并在其中不是持续增大,可以进行定期合并清楚历史状态。


640?wx_fmt=other


该例子中,子任务的操作是一个keyed-state,一个checkpoint文件保存周期是可配置的,本例中是2,配置方式 state.checkpoints.num-retained ,上面展示了每次checkpoint时RocksDB示例中存储的状态以及文件引用关系等。
  • 对于checkpoint CP1,本地RocksDB目录包含两个磁盘文件(sstable),它基于checkpoint的name来创建目录。当完成checkpoint,将在共享注册表(shared state registry)中创建两个实体并将其count置为1.在共享注册表中存储的Key是由操作、子任务以及原始存储名称组成,同时注册表维护了一个Key到实际文件存储路径的Map。

  • 对于checkpoint CP2,RocksDB已经创建了两个新的sstable文件,老的两个文件也存在。在CP2阶段,新的两个生成新文件,老的两个引用原来的存储。当checkpoint结束,所有引用文件的count加1。

  • 对于checkpoint CP3,RocksDB的compaction将sstable-(1),sstable-(2)以及sstable-(3)合并为sstable-(1,2,3),同时删除了原始文件。合并后的文件包含原始文件的所有信息,并删除了重复的实体。除了该合并文件,sstable-(4)还存在,同时有一个sstable-(5)创建出来。Flink将新的sstable-(1,2,3)和sstable-(5)存储到底层,sstable-(4)引用CP2中的,并对相应引用次数count加1.老的CP1的checkpoint现在可以被删除,由于其retained已达到2,作为删除的一部分,Flink将所有CP1中的引用文件count减1.

  • 对于checkpoint CP4,RocksDB合并sstable-(4)、sstable-(5)以及新的sstable-(6)成sstable-(4,5,6)。Flink将该新的sstable存储,并引用sstable-(1,2,3),并将sstable-(1,2,3)的count加1,删除CP2中retained到2的。由于sstable-(1), sstable-(2), 和sstable-(3)降到了0,Flink将其从底层删除。


— THE END —

640?wx_fmt=jpeg

这篇关于Flink在大规模状态数据集下的checkpoint调优的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143209

相关文章

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Prometheus+cpolar如何在手机上也能监控服务器状态?

《Prometheus+cpolar如何在手机上也能监控服务器状态?》本文强调了通过Cpolar这一内网穿透工具,轻松突破Prometheus仅限于局域网访问的限制,实现外网随时随地访问监控数据,教你... 目录前言1.安装prometheus2.安装cpolar实现随时随地开发3.配置公网地址4.保留固定

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E