基于实际业务场景下的Flume部署

2024-09-06 20:38

本文主要是介绍基于实际业务场景下的Flume部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

有这样一个场景,我们要基于某个web服务实时持续收集用户行为数据;
再实施方案前,我们做了以下的准备工作 (不细说)
  • web服务端部署nginx,用于收集用户行为并有形成log (172.17.111.111)

  • 我们数据平台是部署在Hadoop,数据最终固化到hdfs中 (172.22.222.17-19)

  • 数据平台和产生行为日志的机器最好同一个机房,网络环境要保持良好 (废话)

最终方案和技术选型
  • 采用flume服务收集日志

  • 收集的日志目的地统一为kafka

  • sparkstreaming消费kafka数据并固化到hdfs (hive或者kudu等等)

  • flume采用分布式部署结构
    -- 1.web端服务充当发送端
    -- 2.大数据平台的agent组成集群充当接受端
    -- 3.agent跟agent交互通过type=avro

部署flume服务
  • 还有一种方式就是在所在web工程引入flume的log4j代码,但这样会与原有代码冲突,改动大不考虑

  • 下载flume并解压 (web服务所在的机器 172.17.111.111)

#下载
wget http://mirrors.tuna.tsinghua.edu.cn/apache/flume/1.8.0/apache-flume-1.8.0-bin.tar.gz
#解压
tar -zxvf apache-flume-1.8.0-bin.tar.gz
#移到 /opt目录下
mv /home/apache-flume-1.8.0-bin /opt/flume-1.8.0
  • 修改配置文件

cd /opt/flume-1.8.0/conf
vi flume-conf.properties#添加以下内容
#命名agent各元素
agent.sources=source1
agent.channels=channel1#这里定义了三个sink,主要是为了把日志消息轮询发到这三个sink上面
#这三个sink分别又为大数据平台的flume agent
agent.sinks=sink1 sink2 sink3#source1描述
agent.sources.source1.type=exec
#agent来源, 即日志位置
agent.sources.source1.command=tail -F /usr/local/nginx/logs/dev-biwx.belle.net.cn.log
agent.sources.source1.channels=channel1#sink1描述, 用于被slave1(172.22.222.17) agent接受
agent.sinks.sink1.type=avro
agent.sinks.sink1.channel=channel1
agent.sinks.sink1.hostname=172.22.222.17
agent.sinks.sink1.port=10000
agent.sinks.sink1.connect-timeout=200000#sink2描述, 用于被slave2(172.22.222.18) agent接受
agent.sinks.sink2.type=avro
agent.sinks.sink2.channel=channel1
agent.sinks.sink2.hostname=172.22.222.18
agent.sinks.sink2.port=10000
agent.sinks.sink2.connect-timeout=200000#sink2描述, 用于被slave3(172.22.222.19) agent接受
agent.sinks.sink3.type=avro
agent.sinks.sink3.channel=channel1
agent.sinks.sink3.hostname=172.22.222.19
agent.sinks.sink3.port=10000
agent.sinks.sink3.connect-timeout=200000#定义sinkgroup,消息轮询发到这个组内的agent
agent.sinkgroups = g1
agent.sinkgroups.g1.sinks=sink1 sink2 sink3
agent.sinkgroups.g1.processor.type = load_balance
agent.sinkgroups.g1.processor.selector = round_robin#channel1描述
agent.channels.channel1.type = file
agent.channels.channel1.checkpointDir=/var/checkpoint
agent.channels.channel1.dataDirs=/var/tmp
agent.channels.channel1.capacity = 10000
agent.channels.channel1.transactionCapactiy = 100#绑定 source 和 sink 到channel中
agent.sources.source1.channels = channel1
agent.sinks.sink1.channel = channel1
agent.sinks.sink2.channel = channel1
agent.sinks.sink3.channel = channel1:wq!
  • 以上就是web端agent的配置,所有web节点配置都一样;暂时还不能启动,172.22.222.17-19端的agent还没启动;这时候启动会报错

  • 配置接收端agent配置 (基于CDH)

以上是基于CDH看到的 flume 服务实例,注意角色组要不一样

上述的配置文件都很简单,改一下ip和agent名字就好,以下为slave1例子

#Name the components on this agent
file2Kafka.sources = file2Kafka_source
file2Kafka.sinks = file2Kafka_sink
file2Kafka.channels = file2Kafka_channel# Describe/configure the source
file2Kafka.sources.file2Kafka_source.type = avro
file2Kafka.sources.file2Kafka_source.bind = 172.22.222.17
file2Kafka.sources.file2Kafka_source.port= 10000# Describe the sink, 目的地是kafka,注意主题为testnginx
file2Kafka.sinks.file2Kafka_sink.type = org.apache.flume.sink.kafka.KafkaSink
file2Kafka.sinks.file2Kafka_sink.kafka.topic = testnginx
file2Kafka.sinks.file2Kafka_sink.kafka.bootstrap.servers = 172.22.222.17:9092,172.22.222.18:9092,172.22.222.20:9092
file2Kafka.sinks.file2Kafka_sink.kafka.flumeBatchSize = 20# Use a channel which buffers events in memory
file2Kafka.channels.file2Kafka_channel.type = memory
file2Kafka.channels.file2Kafka_channel.capacity =100000
file2Kafka.channels.file2Kafka_channel.dataDirs=10000# Bind the source and sink to the channel
file2Kafka.sources.file2Kafka_source.channels = file2Kafka_channel
file2Kafka.sources.file2Kafka_source2.channels = file2Kafka_channel
file2Kafka.sources.file2Kafka_source3.channels = file2Kafka_channel
file2Kafka.sinks.file2Kafka_sink.channel = file2Kafka_channel
  • 配置好,CDH启动flume服务,务必进入每个agent节点的日志目录查看日志,就算某个agent节点报错,CM界面也不会有提示

#以slave1为例子
cd /var/log/flume-ng
tailf flume-cmf-flume-AGENT-bi-slave1.log

假如是以下信息代表正常启动


启动正常后,启动web端agent

./flume-ng agent --conf ../conf -f ../conf/flume-conf.properties --name agent -Dflume.root.logger=INFO,console
  • web端agent和CDH端agent都启动成功后,我们开始测试下

  • 启动kafka模拟消费端

#在kafka所在broker机器中执行命令
./kafka-console-consumer.sh --bootstrap-server 172.22.222.20:9092,172.22.222.17:9092,172.22.222.18:9092 --topic testnginx --from-beginning
  • 在所在web服务前端页面操作


这时候在kafka就能看到用户点击行为,也正是nginx记录的内容
不断点击,kafka模拟消费端就能不断看到消息进来。

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于基于实际业务场景下的Flume部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143062

相关文章

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

k8s部署MongDB全过程

《k8s部署MongDB全过程》文章介绍了如何在Kubernetes集群中部署MongoDB,包括环境准备、创建Secret、创建服务和Deployment,并通过Robo3T工具测试连接... 目录一、环境准备1.1 环境说明1.2 创建 namespace1.3 创建mongdb账号/密码二、创建Sec

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Python项目打包部署到服务器的实现

《Python项目打包部署到服务器的实现》本文主要介绍了PyCharm和Ubuntu服务器部署Python项目,包括打包、上传、安装和设置自启动服务的步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录一、准备工作二、项目打包三、部署到服务器四、设置服务自启动一、准备工作开发环境:本文以PyChar

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO