旅行商问题 | Matlab基于混合粒子群算法GA-PSO的旅行商问题TSP

2024-09-06 20:04

本文主要是介绍旅行商问题 | Matlab基于混合粒子群算法GA-PSO的旅行商问题TSP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 效果一览
  • 基本介绍
  • 建模步骤
  • 程序设计
  • 参考资料

效果一览

在这里插入图片描述

基本介绍

混合粒子群算法GA-PSO是一种结合了遗传算法(Genetic Algorithm, GA)和粒子群优化算法(Particle Swarm Optimization, PSO)的优化算法。在解决旅行商问题(Traveling Salesman Problem, TSP)时,这种混合算法可以结合两种算法的优点,提高问题的求解效率和精度。

建模步骤

混合粒子群算法GA-PSO在解决旅行商问题(TSP)时,可以通过以下建模步骤来实现:

定义问题:
确定城市之间的距离或者城市的坐标。
确定旅行商需要访问的城市数量。
初始化种群:
随机生成一组初始解作为种群的个体,每个个体表示旅行商访问城市的顺序。
适应度函数:
定义适应度函数,用于评估每个个体(解)的优劣。在TSP中,适应度函数通常是路径长度的倒数,因为目标是最小化路径长度。
遗传算法(GA)的操作:
选择:根据适应度函数选择个体,通常选择适应度较高的个体。
交叉:通过交叉操作产生新个体,可以使用交叉点交叉或者顺序交叉等方法。
变异:对新个体进行变异操作,以增加种群的多样性。
粒子群优化算法(PSO)的操作:
初始化粒子的位置和速度。
更新粒子的速度和位置,根据个体最优和全局最优进行调整。
混合算法的结合:
可以将GA用于全局搜索,PSO用于局部搜索,通过适当的调节参数和权重来平衡两种算法的作用。
迭代优化:
通过多次迭代运行GA和PSO操作,不断优化种群中的个体,直到达到停止条件。
结果分析:
根据最终种群中个体的适应度,选择最优解作为最终的旅行商路径。

程序设计

  • 私信博主回复Matlab基于混合粒子群算法GA-PSO的旅行商问题TSP

参考资料

【1】https://blog.csdn.net/kjm13182345320/article/details/141719046?spm=1001.2014.3001.5501
【2】https://blog.csdn.net/kjm13182345320/article/details/141724169?spm=1001.2014.3001.5501

这篇关于旅行商问题 | Matlab基于混合粒子群算法GA-PSO的旅行商问题TSP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142983

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k